Serendipitous crystallization and structure determination of cyanase (CynS) from Serratia proteamaculans.

Acta Crystallogr F Struct Biol Commun

Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.

Published: April 2015

Cyanate hydratase (CynS) catalyzes the decomposition of cyanate and bicarbonate into ammonia and carbon dioxide. Here, the serendipitous crystallization of CynS from Serratia proteamaculans (SpCynS) is reported. SpCynS was crystallized as an impurity and its identity was determined using mass-spectrometric analysis. The crystals belonged to space group P1 and diffracted to 2.1 Å resolution. The overall structure of SpCynS is very similar to a previously determined structure of CynS from Escherichia coli. Density for a ligand bound to the SpCynS active site was observed, but could not be unambiguously identified. Additionally, glycerol molecules bound at the entry to the active site of the enzyme indicate conserved residues that might be important for the trafficking of substrates and products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388186PMC
http://dx.doi.org/10.1107/S2053230X15004902DOI Listing

Publication Analysis

Top Keywords

serendipitous crystallization
8
cyns serratia
8
serratia proteamaculans
8
active site
8
crystallization structure
4
structure determination
4
determination cyanase
4
cyns
4
cyanase cyns
4
proteamaculans cyanate
4

Similar Publications

Functional flexible adsorbents and their potential utility.

Chem Commun (Camb)

January 2025

Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.

Physisorbents are poised to address global challenges such as CO capture, mitigation of water scarcity and energy-efficient commodity gas storage and separation. Rigid physisorbents, those adsorbents that retain their structures upon gas or vapour exposure, are well studied in this context. Conversely, cooperatively flexible physisorbents undergo long-range structural transformations stimulated by guest exposure.

View Article and Find Full Text PDF

Serendipitous high-resolution structure of Escherichia coli carbonic anhydrase 2.

Acta Crystallogr F Struct Biol Commun

February 2025

Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.

X-ray crystallography remains the dominant method of determining the three-dimensional structure of proteins. Nevertheless, this resource-intensive process may be hindered by the unintended crystallization of contaminant proteins from the expression source. Here, the serendipitous discovery of two novel crystal forms and one new, high-resolution structure of carbonic anhydrase 2 (CA2) from Escherichia coli that arose during a crystallization campaign for an unrelated target is reported.

View Article and Find Full Text PDF

Serendipitous Discovery of Dearomatized Dimers in Anthracene Derivative Oxidation.

Org Lett

January 2025

Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States.

We present the serendipitous discovery of an unusual dimer formed from anthracene-derived polyarenes. Unlike the typical oxidative coupling of substituted aromatic scaffolds, the reaction yielded a dearomatized enone dimer as the sole product. This dearomatized motif, notably, does not undergo the commonly observed rearomatization, and no biaryl products were detected.

View Article and Find Full Text PDF
Article Synopsis
  • The invention of lasers and inorganic second-order nonlinear optical (NLO) crystals has revolutionized technology by enabling unique frequency conversions, essential for various applications including information transmission and industrial uses.
  • As the demand for shorter wavelengths and higher precision lasers increases, there is a pressing need for high-performance ultraviolet NLO materials, especially those with wavelengths less than 300 nm.
  • Current methods of discovering these materials are often inefficient and based on trial-and-error; therefore, a three-step strategy is proposed for a more rational design, focusing on screening new functional groups, regulating crystal structures, and optimizing synthesis to meet stringent performance criteria.
View Article and Find Full Text PDF

Protein tyrosine phosphatases (PTPs) play pivotal roles in myriad cellular processes by counteracting protein tyrosine kinases. Striatal-enriched protein tyrosine phosphatase (STEP, PTPN5) regulates synaptic function and neuronal plasticity in the brain and is a therapeutic target for several neurological disorders. Here, we present three new crystal structures of STEP, each with unexpected features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!