The mechanisms underlying the progression of simple steatosis to steatohepatitis are yet to be elucidated. To identify the proteins involved in the development of liver tissue inflammation, we performed comparative proteomic analysis of non-alcoholic steatohepatitis (NASH). Mice fed a methionine and choline deficient diet (MCD) developed hepatic steatosis characterized by increased free fatty acid (FFA) and triglyceride levels as well as alpha-SMA. Two-dimensional proteomic analysis revealed that the change from the normal diet to the MCD diet affected the expressions of 50 proteins. The most-pronounced changes were observed in the expression of proteins involved in Met metabolism and oxidative stress, most of which were significantly downregulated in NASH model animals. Peroxiredoxin (Prx) is the most interesting among the modulated proteins identified in this study. In particular, cross-regulated Prx1 and Prx6 are likely to participate in cellular defense against the development of hepatitis. Thus, these Prx isoforms may be a useful new marker for early stage steatohepatitis. Moreover, curcumin treatment results in alleviation of the severity of hepatic inflammation in steatohepatitis. Notably, curcumin administration in MCD-fed mice dramatically reduced CYP2E1 as well as Prx1 expression, while upregulating Prx6 expression. These findings suggest that curcumin may have a protective role against MCD fed-induced oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388516PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120577PLOS

Publication Analysis

Top Keywords

proteomic analysis
12
mice fed
8
fed methionine
8
methionine choline
8
choline deficient
8
deficient diet
8
proteins involved
8
diet mcd
8
oxidative stress
8
proteins
5

Similar Publications

Rehabilomics Strategies Enabled by Cloud-Based Rehabilitation: Scoping Review.

J Med Internet Res

January 2025

Department of Physical Medicine and Rehabilitation, Korea University Anam Hospital, Seoul, Republic of Korea.

Background: Rehabilomics, or the integration of rehabilitation with genomics, proteomics, metabolomics, and other "-omics" fields, aims to promote personalized approaches to rehabilitation care. Cloud-based rehabilitation offers streamlined patient data management and sharing and could potentially play a significant role in advancing rehabilomics research. This study explored the current status and potential benefits of implementing rehabilomics strategies through cloud-based rehabilitation.

View Article and Find Full Text PDF

Proteomic Characterization of NEDD4 Unveils Its Potential Novel Downstream Effectors in Gastric Cancer.

J Proteome Res

January 2025

Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea.

The E3 ubiquitin ligase neural precursor cell-expressed developmentally down-regulated 4 (NEDD4) is involved in various cancer signaling pathways, including PTEN/AKT. However, its role in promoting gastric cancer (GC) progression is unclear. This study was conducted to elucidate the role of NEDD4 in GC progression.

View Article and Find Full Text PDF

Chemoproteomic Profiling of Clickable Fumarate Probes for Target Identification and Mechanism of Action Studies.

ACS Chem Biol

January 2025

Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States.

Dimethyl fumarate (DMF) is an established oral therapy for multiple sclerosis worldwide. Although the clinical efficacy of these fumarate esters has been extensively investigated, the mode of action and pharmacokinetics of fumarates have not been fully elucidated due to their broad-spectrum reactivity and complex metabolism in vivo. To better understand the mechanism of action of DMF and its active metabolite, monomethyl fumarate (MMF), we designed and utilized clickable probes to visualize and enrich probe-modified proteins.

View Article and Find Full Text PDF

Aerolysin Nanopore Electrochemistry.

Acc Chem Res

January 2025

Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.

View Article and Find Full Text PDF

Increasing evidence suggests that individuals infected with Coronavirus disease 2019 (COVID-19) are at a higher risk of developing type 2 diabetes (T2D) compared to those who are not infected. However, the mechanisms underlying this relationship remain poorly understood. In this study, we aimed to systematically evaluate the mediating roles of 3,283 plasma proteins in the link between COVID-19 susceptibility and T2D by conducting proteome-wide Mendelian randomization (MR) analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!