14-3-3 proteins are a large multigenic family of regulatory proteins ubiquitously found in eukaryotes. In plants, 14-3-3 proteins are reported to play significant role in both development and response to stress stimuli. Therefore, considering their importance, genome-wide analyses have been performed in many plants including Arabidopsis, rice and soybean. But, till date, no comprehensive investigation has been conducted in any C4 panicoid crops. In view of this, the present study was performed to identify 8, 5 and 26 potential 14-3-3 gene family members in foxtail millet (Si14-3-3), sorghum (Sb14-3-3) and maize (Zm14-3-3), respectively. In silico characterization revealed large variations in their gene structures; segmental and tandem duplications have played a major role in expansion of these genes in foxtail millet and maize. Gene ontology annotation showed the participation of 14-3-3 proteins in diverse biological processes and molecular functions, and in silico expression profiling indicated their higher expression in all the investigated tissues. Comparative mapping was performed to derive the orthologous relationships between 14-3-3 genes of foxtail millet and other Poaceae members, which showed a higher, as well as similar percentage of orthology among these crops. Expression profiling of Si14-3-3 genes during different time-points of abiotic stress and hormonal treatments showed a differential expression pattern of these genes, and sub-cellular localization studies revealed the site of action of Si14-3-3 proteins within the cells. Further downstream characterization indicated the interaction of Si14-3-3 with a nucleocytoplasmic shuttling phosphoprotein (SiRSZ21A) in a phosphorylation-dependent manner, and this demonstrates that Si14-3-3 might regulate the splicing events by binding with phosphorylated SiRSZ21A. Taken together, the present study is a comprehensive analysis of 14-3-3 gene family members in foxtail millet, sorghum and maize, which provides interesting information on their gene structure, protein domains, phylogenetic and evolutionary relationships, and expression patterns during abiotic stresses and hormonal treatments, which could be useful in choosing candidate members for further functional characterization. In addition, demonstration of interaction between Si14-3-3 and SiRSZ21A provides novel clues on the involvement of 14-3-3 proteins in the splicing events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388342 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0123236 | PLOS |
Nat Commun
January 2025
Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
The molecular mechanisms underlying cell migration remain incompletely understood. Here, we show that knock-out cells for NHSL3, the most recently identified member of the Nance-Horan Syndrome family, are more persistent than parental cells in single cell migration, but that, in wound healing, follower cells are impaired in their ability to follow leader cells. The NHSL3 locus encodes several isoforms.
View Article and Find Full Text PDFPharmacol Res
December 2024
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China. Electronic address:
The subcellular localization of Yes-associated protein (YAP) is dynamically regulated by post-transcriptional modifications, critically influencing cardiac function. Despite its significance, the precise mechanism controlling YAP nuclear sequestration and its role in cardiac hypertrophy remain poorly defined. In this study, utilizing immunoprecipitation-mass spectrometry, we identified potential acetylation sites and interacting proteins of YAP.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK.
Coccolithophores comprise a major component of the oceanic carbon cycle. These unicellular algae produce ornate structures made of calcium carbonate, termed coccoliths, representing ~ 50% of calcite production in the open ocean. The exact molecular mechanisms which direct and control coccolith formation are unknown.
View Article and Find Full Text PDFTrends Microbiol
December 2024
Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China. Electronic address:
Protein PARylation is a reversible post-translational modification; however, its role in fungal virulence has remained elusive. Recently, Gao et al. demonstrated that PARylation of two 14-3-3 regulatory proteins by poly(ADP-ribose) polymerase is essential for the virulence of rice blast fungus, highlighting the critical regulatory function of PARylation in fungal pathogenicity.
View Article and Find Full Text PDFFront Mol Biosci
December 2024
Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!