The presence in human nuclear chromosomes of multiple sequences that are highly similar to human mitochondrial tRNAs (tRNA-lookalikes) raises intriguing questions about the possible functionality of these genomic loci. In this perspective, we explore the significance of the mitochondrial tRNA-lookalikes based on a series of properties that argue for their non-accidental nature. We particularly focus on the possibility of transcription as well as on potential functional roles for these sequences that can range from their acting as DNA regulatory elements to forming functional mature tRNAs or tRNA-derived fragments. Extension of our analysis to other simians (chimp, gorilla, rhesus, and squirrel monkey), 2 rodents (mouse and rat), a marsupial (opossum) and 3 invertebrates (fruit-fly, worm, and sponge) revealed that mitochondrial tRNA-lookalikes are prevalent in primates and the opossum but absent from the other analyzed organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615777 | PMC |
http://dx.doi.org/10.1080/15476286.2015.1017239 | DOI Listing |
Genome Biol
December 2020
Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria.
Background: The presence of nuclear mitochondrial DNA (numtDNA) has been reported within several nuclear genomes. Next to mitochondrial protein-coding genes, numtDNA sequences also encode for mitochondrial tRNA genes. However, the biological roles of numtDNA remain elusive.
View Article and Find Full Text PDFBioinformatics
August 2016
Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
Motivation: It has been known that mature transfer RNAs (tRNAs) that are encoded in the nuclear genome give rise to short molecules, collectively known as tRNA fragments or tRFs. Recently, we reported that, in healthy individuals and in patients, tRFs are constitutive, arise from mitochondrial as well as from nuclear tRNAs, and have composition and abundances that depend on a person's sex, population origin and race as well as on tissue, disease and disease subtype. Our findings as well as similar work by other groups highlight the importance of tRFs and presage an increase in the community's interest in elucidating the roles of tRFs in health and disease.
View Article and Find Full Text PDFThe presence in human nuclear chromosomes of multiple sequences that are highly similar to human mitochondrial tRNAs (tRNA-lookalikes) raises intriguing questions about the possible functionality of these genomic loci. In this perspective, we explore the significance of the mitochondrial tRNA-lookalikes based on a series of properties that argue for their non-accidental nature. We particularly focus on the possibility of transcription as well as on potential functional roles for these sequences that can range from their acting as DNA regulatory elements to forming functional mature tRNAs or tRNA-derived fragments.
View Article and Find Full Text PDFFront Genet
October 2014
Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University Philadelphia, PA, USA.
We are interested in identifying and characterizing loci of the human genome that harbor sequences resembling known mitochondrial and nuclear tRNAs. To this end, we used the known nuclear and mitochondrial tRNA genes (the "tRNA-Reference" set) to search for "tRNA-lookalikes" and found many such loci at different levels of sequence conservation. We find that the large majority of these tRNA-lookalikes resemble mitochondrial tRNAs and exhibit a skewed over-representation in favor of some mitochondrial anticodons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!