Repulsive van der waals forces self-limit native oxide growth.

Langmuir

Department of Materials Science and Engineering, University of Florida, 225 Rhines Hall, Gainesville, Florida 32611, United States.

Published: May 2015

Silicon is one of the most studied materials, yet questions remain unanswered about its unusual property of growing a self-limiting native oxide that attains its final thickness in a matter of hours yet months later has not grown further. For the first time, we have explored this self-limiting growth in terms of repulsive van der Waals (vdW) forces generated by the combination of material properties inherent to the system. These repulsive forces represent an energy barrier preventing additional oxidizing chemicals, mainly oxygen and water, from adsorbing on the surface as well as hindering diffusion of those that do adsorb toward the interface. We have also proven that this native oxide can be increased in thickness at room temperature and without reactive species by changing the oxidation environment to one predicted by theory to result in attractive vdW forces, thus allowing oxygen/water to interact with the surface more freely.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.5b00251DOI Listing

Publication Analysis

Top Keywords

native oxide
12
repulsive van
8
van der
8
der waals
8
vdw forces
8
forces
4
waals forces
4
forces self-limit
4
self-limit native
4
oxide growth
4

Similar Publications

Background: Senility influences fertility in women and companion animals, especially horses.

Aim: This study aimed to investigate the effect of aging in horses on the daily changes in the dominant follicle (DF) dynamics and hemodynamics, antimüllerian hormone (AMH), enzymes, antioxidants, and ovarian hormones during the estrous cycle.

Methods: Ovaries of old mares ( = 5, age >20 years) and young native mares ( = 6, age <10 years) were scanned during 6 different estrous cycles from March 2022 to August 2023 with Doppler ultrasound.

View Article and Find Full Text PDF

The outer mitochondrial membrane protein known as mitoNEET was discovered when it was labeled by a photoaffinity derivative of the anti-diabetes medication, pioglitazone. The biological role for mitoNEET and its specific mechanism for achieving this remains an active subject for research. There is accumulating evidence suggesting that mitoNEET could be a component of mitochondrial FeS cofactor biogenesis.

View Article and Find Full Text PDF

Reactive carbonyl species (RCS) are important biomarkers of oxidative stress-related diseases because of their highly reactive electrophilic nature. Despite their potential as triggers for prodrug activation, selective labeling approaches for RCS remain limited. Here, we utilized triphenylphosphonium groups to chemoselectively capture RCS via an aqueous Wittig reaction, forming α,β-unsaturated carbonyls that enable further functionalization.

View Article and Find Full Text PDF

Determination of four forms of plasma thiol amino acids in individuals with chronic kidney disease by UPLC-MS/MS.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

The Affiliated Lianyungang Hospital of Xuzhou Medical University/Department of Pharmacy, Lianyungang First People's Hospital, Jiangsu, Lianyungang 222006, PR China. Electronic address:

The study introduces a robust analytical method based on UPLC-MS/MS for quantifying thiol amino acids, including cysteine (Cys), cysteinylglycine (CG), homocysteine (Hcy), and glutathione (GSH), in their total and total free forms within human plasma. An optimized blank matrix was employed for accurate quantification of endogenous compounds. The method exhibited excellent linearity, precision, accuracy, recovery, and stability, making it highly suitable for plasma analysis.

View Article and Find Full Text PDF

The mechanism of autoreduction in Dehaloperoxidase-A.

Biochem Biophys Res Commun

December 2024

Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA. Electronic address:

Hemoglobin and myoglobin are known to undergo autoxidation, in which the oxyferrous form of the heme is oxidized to the ferric state by O. Dehaloperoxidase-A (DHP-A), a multifunctional catalytic hemoglobin from Amphitrite ornata is an exception and is observed to undergo the reverse process, during which the ferric heme is spontaneously reduced to the oxyferrous form under aerobic conditions. The high reduction potential of DHP (+202 mV at pH 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!