Self-assembled monolayers (SAMs) on gold were obtained by the direct absorption of a fully conjugated phenylenethienylene derivative () presenting robust silylethane-thiol protecting groups as anchoring agents. The thiol deprotection and SAM formation have been evidenced by quartz crystal microbalance (QCM) measurements and X-ray photoelectron spectroscopy (XPS), and have been compared to the SAM obtained from its thioacetate analog (5). The chemically robust silylethane-thiol protecting group appeared as a surprisingly effective anchoring agent for the preparation of aromatic SAMs on Au(111), suitable for subsequent post-functionalization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cc00600g | DOI Listing |
J Org Chem
January 2025
Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
The insertion of carbene into secondary amide N-H bonds remains underexplored in organic synthesis. In this work, we discovered the visible-light-induced insertion of siloxycarbene into amide N-H bonds. This metal-free, facile reaction proceeds with atom economy under mild conditions with a broad range of secondary N-H amides, including benzanilide, acetanilide, oxindole, isatin, quinolinone, and maleimide, affording stable - and -acetals in excellent isolated yields.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
Single atom alloys (SAAs) have gained tremendous attention as promising materials with unique physicochemical properties, particularly in catalysis. The stability of SAAs relies on the formation of a single active dopant on the surface of a metal host, quantified by the surface segregation and aggregation energy. Previous studies have investigated the surface segregation of non-ligated and ligated SAAs to reveal the driving forces underlying such phenomena.
View Article and Find Full Text PDFAnal Methods
January 2025
Marine Elements and Marine Environment Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India.
Monitoring persistent organic pollutants (POPs) with endocrine-disrupting properties poses significant analytical challenges due to labor-intensive, costly, and environmentally unsustainable procedures. This study developed an efficient and robust approach for the simultaneous detection of diverse groups of semi-volatile organics in water and sediment samples using gas chromatography-tandem mass spectrometry (GC-MS). Two extraction methods were studied for determining POPs in water and sediments.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.
Background: Traditional methods for fabricating protein-polyphenol conjugates have not preserved the structural and functional integrity essential for the food industry effectively. This research introduces an advanced encapsulation methodology designed to overcome these limitations, with the potential to enhance the stability of edible oil matrices significantly, leading to improved preservation techniques and extended shelf life.
Results: Glycated pea protein isolate-curcumin conjugates (gPPI-CUR) were developed, demonstrating a marked improvement in the oxidative stability of walnut oil (WO), a proxy for edible oil matrices.
Nucleic Acids Res
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi 710119, P.R. China.
We present a robust 'splice-at-will' CRISPR RNA (crRNA) engineering mechanism that overcomes the limitations of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system in directly detecting ultrashort RNAs. In this strategy, an intact Cas12a crRNA can be split from almost any site of the spacer region to obtain a truncated crRNA (tcrRNA) that cannot activate Cas12a even after binding an auxiliary DNA activator. While splicing tcrRNAs with a moiety of ultrashort RNA, the formed combination can work together to activate Cas12a efficiently, enabling 'splice-at-will' crRNA engineering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!