Background And Objective: Molecular epidemiological studies have shown that certain genotypes of Mycobacterium tuberculosis (MTB) are over-represented in limited geographical regions, suggesting of evolution of certain genotypes with increasing virulence and pathogenicity. Beijing strain of MTB was initially described by its potential to cause outbreaks worldwide and its association with drug resistance. Due to tuberculosis (TB)-related mortality which is associated with Beijing genotype, this study was designed with the aim to detect the MTB Beijing genotype in the region of study.

Materials And Methods: A total of 170 clinical isolates of MTB were collected from the TB reference laboratory of Khuzestan province, Iran, over one year period from February 2010 to February 2011. Phenotypic tests were used for preliminary detection of MTB. Culture positive MTB isolates were confirmed by multiplex PCR based on IS6110 gene with subsequent screening for resistance to isoniazid (INH), and rifampin (RIF) by PCR using relevant primers. Three set of primers were used to differentiate Beijing from non-Beijing strains by using Deletion- Targeted Multiplex (DTM) PCR.

Results: From 160 PCR-confirmed MTB isolates, 18 (11.25%) showed mutation in katG gene related to INH resistance and 20 (12.5%), associated with mutation in rpoB gene related to RIF resistance, and 8 (5%) were detected as Beijing strain using multiplex PCR. The majority of detected Beijing strains (6/8[75%]) comprised mutation in katG gene with the prevalent mutation specifically in codon 315. In 4 Beijing strains (2.5%), mutation in rpoB gene were also detected.

Conclusion: Using DTM- PCR, the rate of Beijing strains in the region of study was determined as 5%. Although for detection of MTB antimicrobial resistance, it is advised to use a combination of conventional antimicrobial susceptibility testing and molecular techniques, however for time saving, it seems that DTM-PCR, is a simple technique for use in areas of the world where Beijing strains are highly prevalent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385573PMC

Publication Analysis

Top Keywords

beijing strains
20
multiplex pcr
12
beijing
10
deletion- targeted
8
targeted multiplex
8
mycobacterium tuberculosis
8
mtb
8
beijing strain
8
beijing genotype
8
detection mtb
8

Similar Publications

Immobilization of Peniophora incarnata F1 in PVA-SA-biochar matrix and its degradation performance and mechanism for erythromycin degradation.

J Environ Manage

January 2025

Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou, 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou, 213164, China. Electronic address:

Erythromycin is becoming one of the most common contaminants detected in surface water and wastewater, which poses a potential risk to ecological systems and human health. Until now, there is still no effective way to eliminate it. Herein, a novel and efficient erythromycin-degrading fungus Peniophora incarnata F1, capable of utilizing erythromycin as its sole source of carbon and energy, was isolated from contaminated sludge.

View Article and Find Full Text PDF

Topologically constrained DNA-mediated one-pot CRISPR assay for rapid detection of viral RNA with single nucleotide resolution.

EBioMedicine

January 2025

Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, New Cornerstone Science Foundation, Beijing, 100084, China. Electronic address:

Background: The widespread and evolution of RNA viruses, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights the importance of fast identification of virus subtypes, particularly in non-laboratory settings. Rapid and inexpensive at-home testing of viral nucleic acids with single-base resolution remains a challenge.

Methods: Topologically constrained DNA ring is engineered as substrates for the trans-cleavage of Cas13a to yield an accelerated post isothermal amplification.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the effects of different cold acclimation strategies on exercise performance in male mice exposed to low-temperature environments.

Methods: Male mice were subjected to five distinct acclimation regimens over 8 weeks: immersion at 10 °C (10 °CI) or 20 °C (20 °CI), swimming at 10 °C (10 °CS), 20 °C (20 °CS), or 34 °C (34 °CS). During the first 2 weeks, the acclimation time progressively decreased from 30 min to 3 min per day, and the water temperatures were lowered from 34 °C to the target levels, followed by 6 weeks of consistent exposure.

View Article and Find Full Text PDF

Inovirus-Encoded Peptides Induce Specific Toxicity in .

Viruses

January 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

is a common opportunistic pathogen associated with nosocomial infections. The primary treatment for infections typically involves antibiotics, which can lead to the emergence of multidrug-resistant strains. Therefore, there is a pressing need for safe and effective alternative methods.

View Article and Find Full Text PDF

Background: A broad-spectrum anti-SARS-CoV-2 monoclonal antibody (mAb), SA55, is highly effective against SARS-CoV-2 variants. This trial aimed at demonstrating the safety, tolerability, local drug retention and neutralizing activity, systemic exposure level, and immunogenicity of the SA55 nasal spray in healthy individuals.

Methods: This phase I, dose-escalation clinical trial combined an open-label design with a randomized, controlled, double-blind design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!