The present study profiled and analyzed gene expression of the maize ear at four key developmental stages. Based on genome-wide profile analysis, we detected differential mRNA of maize genes. Some of the differentially expressed genes (DEGs) were predicted to be potential candidates of maize ear development. Several well-known genes were found with reported mutant analyses, such as, compact plant2 (ct2), zea AGAMOUS homolog1 (zag1), bearded ear (bde), and silky1 (si1). MicroRNAs such as microRNA156 were predicted to target genes involved in maize ear development. Antisense transcripts were widespread throughout all the four stages, and are suspected to play important roles in maize ear development. Thus, identification and characterization of important genes and regulators at all the four developmental stages will contribute to an improved understanding of the molecular mechanisms responsible for maize ear development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygeno.2015.03.005 | DOI Listing |
Microb Pathog
December 2024
IDIAP, Ciudad Del Saber, Panama.
Zea mays is the second most popular cereal crop in Panama. Its production is intended for human and livestock consumption but is threatened by several diseases. We report the occurrence of Fusarium ear rot, a disease that has affected corn production in a specific region of Panama.
View Article and Find Full Text PDFMol Plant Microbe Interact
December 2024
University of Illinois at Urbana-Champaign, Crop Sciences, Urbana, Illinois, United States;
is one of the most important plant-pathogenic fungi that causes disease on wheat and maize, as it decreases yield in both crops and produces mycotoxins that pose a risk to human and animal health. Resistance to Fusarium head blight (FHB) in wheat is well studied and documented. However, resistance to Gibberella ear rot (GER) in maize is less understood, despite several similarities with FHB.
View Article and Find Full Text PDFPlant J
December 2024
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
Maize has undergone remarkable domestication and shows striking differences in architecture and ear morphology compared to its wild progenitor, called teosinte. However, our understanding of the genetic mechanisms underlying the ear morphology differences between teosinte and cultivated maize is still limited. In this study, we explored the genetic basis of ear-related traits at both early and mature stages by analyzing a population derived from a cross between Mo17 and a teosinte line, mexicana.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Academic Coordination, Campus Cachoeira do Sul, Federal University of Santa Maria, Santa Maria 97105-900, Brazil.
This study aimed to analyze yield components and maize yield cultivated at different population densities in management zones (MZs) delimited based on mapping the spatial variability of the soil's apparent electrical conductivity (ECa). The soil ECa was measured, and two MZs were subsequently delimited, one with low ECa and the other with high ECa. In each MZ, four maize sowing densities were tested: 60,000 (D1); 80,000 (D2); 100,000 (D3); and 140,000 (D4) seeds ha.
View Article and Find Full Text PDFPlant Dis
December 2024
Maize Research Institute, Phytopathology, Belgrade, Serbia;
Fusarium graminearum species complex (FGSC) includes at least fifteen species which are some of the most significant fungi that infect maize in temperate areas (Sarver et al. 2011). Agroecological conditions in Serbia are suitable for the development of infection by members of FGSC and therefore during the period of 1993-2010, maize samples collected from northern Serbia (46°5'55" N, 19°39'47" E) showed typical symptoms of gibberella ear rot.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!