Red Raspberry (Rubus idaeus) is traditionally classified as non-climacteric, and the role of ethylene in fruit ripening is not clear. The available information indicates that the receptacle, a modified stem that supports the drupelets, is involved in ethylene production of ripe fruits. In this study, we report receptacle-related ethylene biosynthesis during the ripening of fruits of cv. Heritage. In addition, the expression pattern of ethylene biosynthesis transcripts was evaluated during the ripening process. The major transcript levels of 1-aminocyclopropane-1-carboxylic acid synthase (RiACS1) and 1-aminocyclopropane-1-carboxylic acid oxidase (RiACO1) were concomitant with ethylene production, increased total soluble solids (TSS) and decreased titratable acidity (TA) and fruit firmness. Moreover, ethylene biosynthesis and transcript levels of RiACS1 and RiACO1 were higher in the receptacle, sustaining the receptacle's role as a source of ethylene in regulating the ripening of raspberry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2015.02.005 | DOI Listing |
Plant Cell
January 2025
National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China.
The reddish apocarotenoid β-citraurin, produced by CAROTENOID CLEAVAGE DIOXYGENASE 4b (CsCCD4b), is responsible for peel reddening in citrus (Citrus spp.). Ethylene induces the characteristic red color of citrus peel, but the underlying molecular mechanism remains largely unclear.
View Article and Find Full Text PDFFood Chem
January 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Sodium hydrosulfide (NaHS), a hydrogen sulfide (H₂S) donor, effectively mitigates chilling injury (CI) in bananas; however, the underlying molecular mechanisms remain unclear. This study demonstrated that NaHS alleviates CI symptoms by activating antioxidant defense systems that reduce oxidative stress induced by CI. Transcriptomic analysis revealed 1003 differentially expressed genes in three sample groups, with enrichment in pathways related to cellular processes, metabolic activity, and secondary metabolite biosynthesis.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.
Burns are complex traumatic injuries that lead to severe physical and psychological problems due to the prolonged healing period and resulting physical scars. Owing to their versatility, hydrogels can be loaded with various functional factors, making them promising wound dressings. However, many hydrogel dressings cannot support cell survival for a long time, thereby delaying the process of tissue repair.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Madrid, Spain.
Plants are sessile organisms that overcome environmental stress by activating specific metabolic pathways, leading to adaptation and survival. In addition, they recruit beneficial bacterial strains to further improve their performance. As plant-growth-promoting rhizobacteria (PGPR) are able to trigger multiple targets to improve plant fitness, finding effective isolates for this purpose is of paramount importance.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
The plant hormone ethylene elicits crucial regulatory effects on plant growth, development, and stress resistance. As the enzyme that catalyzes the final step of ethylene biosynthesis, 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO) plays a key role in precisely controlling ethylene production. However, the functional characterization of the gene family in rice remains largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!