iTRAQ analysis of hepatic proteins in free-living Mus spretus mice to assess the contamination status of areas surrounding Doñana National Park (SW Spain).

Sci Total Environ

Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain. Electronic address:

Published: August 2015

This work aims to develop and integrate new -omics tools that would be applicable to different ecosystem types for a technological updating of environmental evaluations. We used a 2nd-generation (iTRAQ-8plex) proteomic approach to identify/quantify proteins differentially expressed in the liver of free-living Mus spretus mice from Doñana National Park or its proximities. Mass spectrometry was performed in an LTQ Orbitrap system for iTRAQ reporter ion quantitation and protein identification using a Mus musculus database as reference. A prior IEF step improved the separation of the complex peptide mixture. Over 2000 identified proteins were altered, of which 118 changed by ≥2.5-fold in mice from at least two problem sites. Part of the results obtained with the iTRAQ analysis was confirmed by Western blot. Over 75% of the 118 proteins were upregulated in animals captured at polluted sites and only 16 proteins were downregulated. Upregulated proteins were involved in stress response; cell proliferation and apoptosis; signal transduction; metastasis or tumour suppression; xenobiotic export or vesicular trafficking; and metabolism. The downregulated proteins, all potentially harmful, were classified as oncoproteins and proteins favouring genome instability. The iTRAQ results presented here demonstrated that the survival of hepatic cells is compromised in animals living at polluted sites, which showed deep alterations in metabolism and the signalling pathways. The identified proteins may be useful as biomarkers of environmental pollution and provide insight about the metabolic pathways and/or physiological processes affected by pollutants in DNP and its surrounding areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2015.03.116DOI Listing

Publication Analysis

Top Keywords

proteins
9
itraq analysis
8
free-living mus
8
mus spretus
8
spretus mice
8
doñana national
8
national park
8
identified proteins
8
polluted sites
8
itraq
4

Similar Publications

TREM2 is a signaling receptor expressed on microglia that has emerged as an important drug target for Alzheimer's disease and other neurodegenerative diseases. While a number of TREM2 ligands have been identified, little is known regarding the structural details of how they engage. To better understand this, we created a protein library of 28 different TREM2 variants that could be used to map interactions with various ligands using biolayer interferometry.

View Article and Find Full Text PDF

Sarcolemma resilience and skeletal muscle health require O-mannosylation of dystroglycan.

Skelet Muscle

January 2025

Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.

Background: Maintaining the connection between skeletal muscle fibers and the surrounding basement membrane is essential for muscle function. Dystroglycan (DG) serves as a basement membrane extracellular matrix (ECM) receptor in many cells, and is also expressed in the outward-facing membrane, or sarcolemma, of skeletal muscle fibers. DG is a transmembrane protein comprised of two subunits: alpha-DG (α-DG), which resides in the peripheral membrane, and beta-DG (β-DG), which spans the membrane to intracellular regions.

View Article and Find Full Text PDF

Background: Patients with estrogen receptor (ER)-positive breast cancer (BC) can be treated with endocrine therapy targeting ER, however, metastatic recurrence occurs in 25% of the patients who have initially been treated. Secreted proteins from tumors play important roles in cancer metastasis but previous methods for isolating secretory proteins had limitations in identifying novel targets.

Methods: We applied an in situ secretory protein labeling technique using TurboID to analyze secretome from tamoxifen-resistant (TAMR) BC.

View Article and Find Full Text PDF

Background: Neutropenia frequently presents as a hematological manifestation among people living with HIV/AIDS (PLWHA). This study explores the factors associated with neutropenia in PLWHA and its prognostic significance.

Methods: We conducted a retrospective case-control study of the clinical data from 780 cases of individuals living with HIV/AIDS, who were admitted to Zhongnan Hospital of Wuhan University over the period from January 2016 to September 2020.

View Article and Find Full Text PDF

Plasma S100β is a predictor for pathology and cognitive decline in Alzheimer's disease.

Fluids Barriers CNS

January 2025

Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.

Background: Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment.

Methods: We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!