The extensive use of radium during the 20th century for industrial, military and pharmaceutical purposes has led to a large number of contaminated legacy sites across Europe and North America. Sites that pose a high risk to the general public can present expensive and long-term remediation projects. Often the most pragmatic remediation approach is through routine monitoring operating gamma-ray detectors to identify, in real-time, the signal from the most hazardous heterogeneous contamination (hot particles); thus facilitating their removal and safe disposal. However, current detection systems do not fully utilise all spectral information resulting in low detection rates and ultimately an increased risk to the human health. The aim of this study was to establish an optimised detector-algorithm combination. To achieve this, field data was collected using two handheld detectors (sodium iodide and lanthanum bromide) and a number of Monte Carlo simulated hot particles were randomly injected into the field data. This allowed for the detection rate of conventional deterministic (gross counts) and machine learning (neural networks and support vector machines) algorithms to be assessed. The results demonstrated that a Neural Network operated on a sodium iodide detector provided the best detection capability. Compared to deterministic approaches, this optimised detection system could detect a hot particle on average 10cm deeper into the soil column or with half of the activity at the same depth. It was also found that noise presented by internal contamination restricted lanthanum bromide for this application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2015.03.131 | DOI Listing |
Sci Total Environ
January 2025
Wildlife Health Lab, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY 14853, USA. Electronic address:
Waterfowl serve as indicators of ecosystem health and represent a pathway of contaminant exposure for hunters who consume them. In the northeast Atlantic Flyway, data on baseline contaminant loads in waterfowl are lacking. We assessed five species of commonly harvested (and consumed) waterfowl for mercury, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and per- and polyfluoroalkyl substances (PFAS).
View Article and Find Full Text PDFACS ES T Water
January 2025
Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States.
Alkylated polycyclic aromatic hydrocarbons (PAHs) are abundant constituents of many PAH mixtures and contribute to risk at contaminated sites. Despite their abundance, the movement of alkylated PAHs remains understudied relative to unsubstituted PAHs. In the present study, passive sampling devices were deployed in the air, water, and sediments at 11 locations across multiple seasons to capture spatial and temporal variability in the abundance and movement of alkylated PAHs at a Brownsfield creosote site in Oregon, USA.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States.
Historic copper mining left a legacy of metal-rich tailings resulting in ecological impacts along and within Torch Lake, an area of concern in the Keweenaw Peninsula, Michigan, USA. Given the toxicity of copper to invertebrates, this study assessed the influence of this legacy on present day nearshore aquatic and terrestrial ecosystems. We measured the metal (Co, Cu, Ni, Zn, Cd) and metalloid (As) concentrations in sediment, pore water, surface water, larval and adult insects, and two riparian spider taxa collected from Torch Lake and a nearby reference lake.
View Article and Find Full Text PDFCureus
December 2024
Department of Pharmacy Practice, Ratnam Institute of Pharmacy, Nellore, IND.
Introduction The success of surgical procedures is becoming more threatened by the advent of multi-drug resistant (MDR) bacterial strains, sometimes known as superbugs. These resistant microorganisms frequently cause post-surgical infections, which raise morbidity, death, and medical expenses. With an emphasis on resistant strains, this seeks to create an antibiogram and a thorough microbiological profile of surgical infections in order to help choose the most effective antimicrobial therapy.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Earth Sciences, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada.
Metal mining operations can release toxic metals to surrounding environments where site-specific conditions control the movement of contaminants. Colloid-facilitated transport, the transport of contaminants with small, mobile particles, has been recognized as a potential contaminant transport vector in groundwater, but it remains unclear under what conditions it is important and whether neutral, metal-rich mine drainage from legacy mining impacts this transport vector. This work presents a set of laboratory column experiments that study the effect of colloids on metal mobility in saturated, wetland sediment that has been receiving neutral mine drainage for nearly a century, using mixed and single metal input solutions at neutral pH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!