A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Toxic effects of cadmium on flatworm stem cell dynamics: A transcriptomic and ultrastructural elucidation of underlying mechanisms. | LitMetric

Stem cells or undifferentiated cells can cope more easily with external stresses. To evaluate the impact of toxic compounds on stem cell dynamics in vivo, in relation to other biological responses, we use the carcinogenic element cadmium and the regenerating model organism Macrostomum lignano. Through both BrdU and anti-histone H3 immunostainings, cadmium-induced effects were investigated at different stages of the stem cell cycle. A 24-h exposure to 100 and 250 μM CdCl2 significantly decreased the number of stem cells (neoblasts) in mitosis, whereas the number of cells in the S phase remained unchanged. After this short-term exposure, the ultrastructure of the neoblasts was minimally affected in contrast to the epidermal tissues. These results were supported by gene expression data: transcripts of cdc2 and pig3 were significantly upregulated during all treatments. Both genes are involved in the cell cycle progression and are transcribed in the gonadal region, where stem cells are highly represented. Based on a substantial increase in gene expression of heat shock proteins (HSP) and their high activity in the gonadal region, we hypothesize that these proteins are key players in the protection of stem cells against external stresses. Apart from the strong HSP induction, other protective processes including cell division, apoptosis and anti-oxidative defence, were also activated. We, therefore, conclude that the protection of stem cells against external stressors may be based on the interplay between stem cell maintenance, i.e. repair and recovery through division, on one hand and apoptosis on the other hand. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1217-1228, 2016.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.22129DOI Listing

Publication Analysis

Top Keywords

stem cells
20
stem cell
16
stem
9
cell dynamics
8
external stresses
8
cell cycle
8
gene expression
8
gonadal region
8
protection stem
8
cells external
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!