Here, we describe the draft sequence of a virulent isolate of Neisseria meningitidis strain L91543, belonging to serogroup C. The findings from previous proteomic and metabolomic studies of this strain can now be further interpreted with genomic analysis. Comparative analysis of the genome sequence revealed close similarity and localized synteny with the genome sequence of N. meningitidis serogroup C strain, FAM18. Polymorphisms were identified in the signal peptide sequence of factor H binding protein, a target for new meningococcal vaccines, which may result in its inefficient translocation across the cytoplasmic membrane affecting its processing (lipidation and cleavage of the signal peptide) and transportation to the outer membrane in strain L91543. This would explain the unusual proteomic data for factor H binding protein for this strain. NadA, another target for new vaccines, and the MtrR regulator, which controls expression of NadA, both contain SNPs between strains L91543 and FAM18. The genome sequence data were generated using Ion Torrent PGM sequencing, assembled into 50 contigs with 64× coverage and annotated with 2262 genes, 14 rRNAs and 56 tRNAs. The availability of the genome of N. meningitidis strain L91543 will aid our understanding of the proteome of this organism, importantly its vaccine antigens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsle/fnv055 | DOI Listing |
FEMS Microbiol Lett
May 2015
School of Life Sciences, Faculty of Science, Engineering and Computing, Kingston University, Kingston upon Thames, Penrhyn Road, KT1 2EE, UK
Here, we describe the draft sequence of a virulent isolate of Neisseria meningitidis strain L91543, belonging to serogroup C. The findings from previous proteomic and metabolomic studies of this strain can now be further interpreted with genomic analysis. Comparative analysis of the genome sequence revealed close similarity and localized synteny with the genome sequence of N.
View Article and Find Full Text PDFMicrobiology (Reading)
February 2014
School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK.
Most healthy adults are protected from meningococcal disease by the presence of naturally acquired anti-meningococcal antibodies; however, the identity of the target antigens of this protective immunity remains unclear, particularly for protection against serogroup B disease. To identify the protein targets of natural protective immunity we developed an immunoprecipitation and proteomics approach to define the immunoproteome of the meningococcus. Sera from 10 healthy individuals showing serum bactericidal activity against both a meningococcal C strain (L91543) and the B strain MC58, together with commercially available pooled human sera, were used as probe antisera.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!