An aberration-corrected STEM study of structural defects in epitaxial GaN thin films grown by ion beam assisted MBE.

Micron

Leibniz Institute of Surface Modification, Permoserstr. 15, D-04318 Leipzig, Germany; Universität Leipzig, Institut für Experimentelle Physik II, Linnéstraße 5, D-04103 Leipzig, Germany.

Published: June 2015

Ion-beam assisted molecular-beam epitaxy was used for direct growth of epitaxial GaN thin films on super-polished 6H-SiC(0001) substrates. The GaN films with different film thicknesses were studied using reflection high energy electron diffraction, X-ray diffraction, cathodoluminescence and primarily aberration-corrected scanning transmission electron microscopy techniques. Special attention was devoted to the microstructural characterization of GaN thin films and the GaN-SiC interface on the atomic scale. The results show a variety of defect types in the GaN thin films and at the GaN-SiC interface. A high crystalline quality of the produced hexagonal GaN thin films was demonstrated. The gained results are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2015.03.006DOI Listing

Publication Analysis

Top Keywords

gan thin
20
thin films
20
epitaxial gan
8
films gan-sic
8
gan-sic interface
8
gan
6
films
6
thin
5
aberration-corrected stem
4
stem study
4

Similar Publications

Owing to its high spatial resolution and its high sensitivity to chemical element detection, transmission electron microscopy (TEM) technique enables to address high-level materials characterization of advanced technologies in the microelectronics field. TEM instruments fitted with various techniques are well-suited for assessing the local structural and chemical order of specific details. Among these techniques, 4D-STEM is suitable to estimate the strain distribution of a large field of view.

View Article and Find Full Text PDF

To date, III-V semiconductor-based tandem devices with GaInP top photoabsorbers show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. In photoelectrochemical (PEC) cells, however, III-V semiconductors are sensitive, in terms of photochemical stability and, therefore, require suitable functional layers for electronic and chemical passivation. GaN films are discussed as promising options for this purpose.

View Article and Find Full Text PDF

Quorum sensing signals of the grapevine crown gall bacterium, sp. Rr2-17: use of inducible expression and polymeric resin to sequester acyl-homoserine lactones.

PeerJ

December 2024

The Thomas H. Gosnell School of Life Sciences, Biotechnology and Molecular Bioscience Program, College of Science, Rochester Institute of Technology, Rochester, New York, United States.

Background: A grapevine crown gall tumor strain, sp. strain Rr2-17 was previously reported to accumulate copious amounts of diverse quorum sensing signals during growth. Genome sequencing identified a single luxI homolog in strain Rr2-17, suggesting that it may encode for a AHL synthase with broad substrate range, pending functional validation.

View Article and Find Full Text PDF

One-Step Fabrication Process of Silica-Titania Superhydrophobic UV-Blocking Thin Coatings onto Polymeric Films.

Biomimetics (Basel)

December 2024

Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.

Developing a durable multifunctional superhydrophobic coating on polymeric films that can be industrially scalable is a challenge in the field of surface engineering. This article presents a novel method for a scalable technology using a simple single-step fabrication of a superhydrophobic coating on polymeric films that exhibits excellent water-repelling and UV-blocking properties, along with impressive wear resistance and chemical robustness. A mixture of titanium precursors, tetraethylorthosilicate (TEOS), hydrophobic silanes and silica nano/micro-particles is polymerized directly on a corona-treated polymeric film which reacts with the surface via siloxane chemistry.

View Article and Find Full Text PDF

Achieving efficient and sustainable hydrogen production through photocatalysis is highly promising yet remains a significant challenge, especially when replacing costly noble metals with more abundant alternatives. Conversion efficiency with noble-metal-free alternatives is frequently limited by high charge recombination rates, mainly due to the sluggish transfer and inefficient consumption of photo-generated holes. To address these challenges, a rational design of noble-metal-free cocatalysts as oxidative sites is reported to facilitate hole consumption, leading to markedly increased H yield rates without relying on expensive noble metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!