A cellulolytic fiber-degrading bacterium, Ruminococcus champanellensis, was isolated from human faecal samples, and its genome was recently sequenced. Bioinformatic analysis of the R. champanellensis genome revealed numerous cohesin and dockerin modules, the basic elements of the cellulosome, and manual sequencing of partially sequenced genomic segments revealed two large tandem scaffoldin-coding genes that form part of a gene cluster. Representative R. champanellensis dockerins were tested against putative cohesins, and the results revealed three different cohesin-dockerin binding profiles which implied two major types of cellulosome architectures: (i) an intricate cell-bound system and (ii) a simplistic cell-free system composed of a single cohesin-containing scaffoldin. The cell-bound system can adopt various enzymatic architectures, ranging from a single enzyme to a large enzymatic complex comprising up to 11 enzymes. The variety of cellulosomal components together with adaptor proteins may infer a very tight regulation of its components. The cellulosome system of the human gut bacterium R. champanellensis closely resembles that of the bovine rumen bacterium Ruminococcus flavefaciens. The two species contain orthologous gene clusters comprising fundamental components of cellulosome architecture. Since R. champanellensis is the only human colonic bacterium known to degrade crystalline cellulose, it may thus represent a keystone species in the human gut.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1462-2920.12868 | DOI Listing |
Sci Rep
December 2024
Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.
View Article and Find Full Text PDFJ Nutr
December 2024
Bioactive Compounds and Carbohydrates (BIOCARB) Research Group - Department of Food Science and Technology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa, MG, 36570-900, Brazil. Electronic address:
Background: Kombucha, a fermented beverage obtained from a Symbiotic Culture of Bacteria and Yeast (SCOBY), has shown potential in modulating gut microbiota, although no clinical trials have been done.
Objective: We aimed to evaluate the effects of regular black tea kombucha consumption on intestinal health in individuals with and without obesity.
Methods: A pre-post clinical intervention study was conducted lasting eight weeks.
Metabolites
December 2024
Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, Tabuk 71491, Saudi Arabia.
Background/objectives: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder associated with gut dysbiosis. To investigate the association between gut microbiota and T2DM in a Saudi Arabian population.
Methods: We conducted a comparative analysis of fecal microbiota from 35 individuals, including both T2DM patients and healthy controls.
Front Cell Infect Microbiol
December 2024
Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.
Background: Existing literature indicates that Gestational diabetes mellitus (GDM) and maternal obesity disrupt the normal colonization of the neonatal gut microbiota alone. Still, the combined impact of GDM and excessive gestational weight gain (EGWG) on this process remains under explored. The association between gestational weight gain before/after GDM diagnosis and neonatal gut microbiota characteristics is also unclear.
View Article and Find Full Text PDFGut Microbiome (Camb)
May 2024
Department of Environmental Management and Toxicology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria.
The gut microbiota (GM) comprises microorganisms in the human gastrointestinal tract (GIT). Lifestyle choices like smoking lead to gut dysbiosis. This review assessed the effect of cigarette smoke (CS) on gut microbial dysbiosis (GMD) in active smokers compared to non-smokers, as well as the resulting public health implications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!