Long-term studies quantifying impacts of hurricane activity on growth and trajectory of primate populations are rare. Using a 14-year monitored population of Alouatta palliata mexicana as a study system, we developed a modeling framework to assess the relative contribution of hurricane disturbance and two types of human impacts, habitat loss, and hunting, on quasi-extinction risk. We found that the scenario with the highest level of disturbance generated a 21% increase in quasi-extinction risk by 40 years compared to scenarios of intermediate disturbance, and around 67% increase relative to that found in low disturbance scenarios. We also found that the probability of reaching quasi-extinction due to human disturbance alone was below 1% by 40 years, although such scenarios reduced population size by 70%, whereas the risk of quasi-extinction ranged between 3% and 65% for different scenarios of hurricane severity alone, in absence of human impacts. Our analysis moreover found that the quasi-extinction risk driven by hunting and hurricane disturbance was significantly lower than the quasi-extinction risk posed by human-driven habitat loss and hurricane disturbance. These models suggest that hurricane disturbance has the potential to exceed the risk posed by human impacts, and, in particular, to substantially increase the speed of the extinction vortex driven by habitat loss relative to that driven by hunting. Early mitigation of habitat loss constituted the best method for reducing quasi-extinction risk: the earlier habitat loss is halted, the less vulnerable the population becomes to hurricane disturbance. By using a well-studied population of A. p. mexicana, we help understand the demographic impacts that extreme environmental disturbance can trigger on isolated populations of taxa already endangered in other systems where long-term demographic data are not available. For those experiencing heavy anthropogenic pressure and lacking sufficiently evolved coping strategies against unpredictable environmental disturbance, the risk of population extinction can be exacerbated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajp.22402 | DOI Listing |
Mar Environ Res
December 2024
Seascape Ecology Lab (SEL), DiSTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genova, Italy; NBFC (National Biodiversity Future Centre), Piazza Marina 61, 90133, Palermo, Italy.
Extreme events influence ecosystem dynamics, but their effects on coastal marine habitats are often poorly perceived compared to their terrestrial counterparts. The detailed study of changes in benthic communities related to these phenomena is becoming urgent, due to the increasing intensity and frequency of hurricanes recorded in recent decades. Slow-growing benthic sessile organisms are particularly vulnerable to mechanical impacts, especially the large long-lived species with branched morphology that structure Mediterranean coralligenous assemblages.
View Article and Find Full Text PDFCurr Biol
November 2024
Department of Biology, Amherst College, Amherst, MA, USA.
Hurricanes are natural phenomena, but anthropogenic climate change will cause hurricanes to be stronger and more frequent in the future. It has long been known that hurricanes impact plants and animals, but only recently has the impact on biodiversity been mapped globally, showing that species at risk of extinction due to hurricanes are largely restricted to tropical islands. Tropical islands harbor many plants and animals found nowhere else, many of which are currently threatened, and tropical islands have already suffered a disproportionate number of species extinctions due to human activity and introductions of non-native species.
View Article and Find Full Text PDFData Brief
December 2024
New Mexico Consortium, 800 Bradbury Dr SE, Suite 213, Albuquerque, NM 87106, United States.
Structural complexity refers to the three-dimensional arrangement and variability of both biotic and abiotic components of an ecosystem. Metrics that characterize structural complexity are often used to manage various aspects of ecosystem function, such as light transmittance, wildlife habitat, and biological diversity. Additionally, these metrics aid in evaluating resilience to disturbance events, including hurricanes, bark-beetle outbreaks, and wildfire.
View Article and Find Full Text PDFBiomimetics (Basel)
September 2024
School of Management Science and Information Engineering, Jilin University of Finance and Economics, Changchun 130117, China.
The Internet's development has prompted social media to become an essential channel for disseminating disaster-related information. Increasing the accuracy of emotional polarity recognition in tweets is conducive to the government or rescue organizations understanding the public's demands and responding appropriately. Existing sentiment analysis models have some limitations of applicability.
View Article and Find Full Text PDFWater Res
December 2024
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China. Electronic address:
Typhoons associated with heavy rainfall events, potentially triggering harmful algal blooms (cyanoHABs) dominated by cyanobacteria in coastal reservoirs. These blooms deteriorate water quality and produce toxins, posing a threat to aquatic ecosystems. However, the ecological mechanisms driving cyanobacteria communities in response to typhoons remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!