Objective: To review the unique pathophysiology of sepsis-induced acute kidney injury (AKI) and highlight the relevant aspects of the Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline for Acute Kidney Injury that may apply to veterinary patients.
Data Sources: Electronic search of MEDLINE database.
Human Data Synthesis: Sepsis-induced AKI is diagnosed in up to 47% of human ICU patients and is seen as a major public health concern associated with increased mortality and increased progression to chronic kidney disease (CKD). Consensus criteria for the definition and classification of AKI has allowed for accurate description of the epidemiology of patients with AKI. AKI develops from a complex relationship between the initial insult and activation of inflammation and coagulation. In contrast to the traditional view, clinical and experimental data dispute the role of renal ischemia-reperfusion in the development of sepsis-induced AKI. Renal tubular dysfunction with activation of the tubuloglomerular feedback mechanism appears to be a crucial contributor to sepsis-induced AKI. Furosemide and n-acetylcysteine (NAC) do not appear to be helpful in the treatment of AKI. Hydroxyethyl starches (HES), dopamine, and supraphysiological concentrations of chloride are harmful in patients with AKI.
Veterinary Data Synthesis: Community and hospital-acquired AKI is a significant factor affecting survival in critical ill patients. Sepsis-induced AKI occurs in 12% of dogs with abdominal sepsis and is an important contributor to mortality. Early detection of AKI in hospitalized patients currently offers the best opportunity to improve patient outcome. The use of urinary biomarkers to diagnose early AKI should be evaluated in critical care patients.
Conclusion: Veterinary clinical trials comparing treatment choices with the development of AKI are needed to make evidence-based recommendations for the prevention and treatment of AKI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/vec.12297 | DOI Listing |
J Ethnopharmacol
January 2025
Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai 200025, China. Electronic address:
Ethnopharmacological Relevance: Yi-Shen-Hua-Shi granules (YSHSG) have been shown to improve kidney function in various renal disorders, which are characterized by the sudden decline and impairment of kidney function.
Aim Of The Study: To investigate the precise mechanisms and targets of YSHSG in combating sepsis-induced AKI.
Materials And Methods: Through network pharmacology, the active ingredients, main target proteins, and related signaling pathways of YSHSG in the treatment of sepsis-induced AKI were predicted.
Cytojournal
November 2024
Department of Emergency, The First People's Hospital of Tongxiang, Tongxiang, Zhejiang, China.
Objective: Ferroptosis has been described in association with acute kidney injury (AKI)-induced sepsis. Fibronectin type III domain containing protein 5 (FNDC5)/irisin plays a crucial role in renal protection. The objective of this study was to investigate whether FNDC5/irisin is involved in AKI-induced sepsis by modulating ferroptosis, and the molecular mechanisms that may be involved.
View Article and Find Full Text PDFImmunobiology
December 2024
Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, China. Electronic address:
Sepsis-associated acute kidney injury (S-AKI) is a prevalent and life-threatening complication in hospitalized and critically ill patients. Recent researches indicates that immunoproteasome, especially proteasome 20S subunit beta 8 (PSMB8), is highly associated with various kidney diseases. This study aims to investigate the potential involvement of PSMB8 in S-AKI and its impact on apoptosis and inflammation.
View Article and Find Full Text PDFZhonghua Wei Zhong Bing Ji Jiu Yi Xue
November 2024
Department of Critical Medicine Center, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China. Corresponding author: Yu Xiangyou, Email:
Objective: To explore the protective effect and mechanism of acetate on sepsis-induced acute kidney injury (AKI) in rats.
Methods: Male Sprague-Dawley (SD) rats were divided into sham operation group (Sham group), sepsis group caused by cecal ligation and puncture (CLP group), and acetate pretreatment group [NaA group, gavage sodium acetate (NaA) 300 mg/kg twice a day for 7 consecutive days before CLP] using a random number table method, with 7 rats in each group. The blood was taken from the main abdominal artery 24 hours after modeling, and renal tissue was collected from the rats.
Crit Care
December 2024
Division of Nephrology, Department of Medicine, Kidney Research Institute, University of Washington Medical Center, 325 9th Avenue, Seattle, WA, 98104, USA.
Background: Patients with sepsis-induced AKI can be classified into two distinct sub-phenotypes (AKI-SP1, AKI-SP2) that differ in clinical outcomes and response to treatment. The biologic mechanisms underlying these sub-phenotypes remains unknown. Our objective was to understand the underlying biology that differentiates AKI sub-phenotypes and associations with kidney outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!