Microfluidics and nanoparticles based amperometric biosensor for the detection of cyanobacteria (Planktothrix agardhii NIVA-CYA 116) DNA.

Biosens Bioelectron

Bioelectronic Devices and Systems Group, UEKAE-BILGEM-The Scientific and Technological Research Council of Turkey (TUBITAK), 41470 Gebze, Kocaeli, Turkey. Electronic address:

Published: August 2015

Some of the cyanobacteria produce protease inhibitor oligopeptides such as cyanopeptolins and cause drinking water contamination; hence, their detection has great importance to monitor the well-being of water sources that is used for human consumption. In the current study, a fast and sensitive nucleic acid biosensor assay has been described where cyanopeptolin coding region of one of the cyanobacteria (Planktothrix agardhii NIVA-CYA 116) genome has been used as target for monitoring of the fresh water resources. A biochip that has two sets of Au electrode arrays, each consist of shared reference/counter electrodes and 3 working electrodes has been used for the assay. The biochip has been integrated to a microfluidics system and all steps of the assay have been performed during the reagent flow to achieve fast and sensitive DNA detection. On-line hybridization of the target on to the capture probe immobilized surface resulted in a very short assay duration with respect to the conventional static assays. The binding of the avidin and enzyme modified Au nanoparticles to the biotinylated detection probe and the subsequent injection of the substrate enabled a real-time amperometric measurement with a detection limit of 6×10(-12) M target DNA (calibration curve r(2)=0.98). The developed assay enables fast and sensitive detection of cyanopeptolin producing cyanobacteria from freshwater samples and hence shows a promising technology for toxic microorganism detection from environmental samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2015.03.052DOI Listing

Publication Analysis

Top Keywords

fast sensitive
12
cyanobacteria planktothrix
8
planktothrix agardhii
8
agardhii niva-cya
8
niva-cya 116
8
detection
7
assay
5
microfluidics nanoparticles
4
nanoparticles based
4
based amperometric
4

Similar Publications

Background: Insulin resistance (IR) is a common pathophysiologic feature in patients with polycystic ovary syndrome (PCOS). However, there have been no studies investigating the association of IR surrogates with pregnancy outcomes in women with PCOS undergoing in vitro fertilization (IVF). Therefore, we explored the association between these factors among PCOS patients.

View Article and Find Full Text PDF
Article Synopsis
  • Red cell distribution width (RDW) is a measure of variability in red blood cell sizes and may indicate cardiovascular disease (CVD) risk, especially in low-resource areas, according to a study in Ghana and Nigeria.
  • The study involved 319 adults with hypertension who underwent assessments like blood pressure and RDW measurement, revealing an average RDW of 13.96% and a median CVD risk score of 8.11%.
  • Findings showed that RDW is positively correlated with age, systolic and diastolic blood pressure, and WHO CVD risk scores, suggesting RDW could be a useful predictor of CVD risk in this population, particularly with an RDW cutoff of >14
View Article and Find Full Text PDF

Room-temperature and recyclable preparation of cellulose nanofibers using deep eutectic solvents for multifunctional sensor applications.

Int J Biol Macromol

January 2025

State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China. Electronic address:

Cellulose nanofibers (CNFs) have gained increasing attention due to their robust mechanical properties, favorable biocompatibility, and facile surface modification. However, green and recyclable CNF production remains challenging. Herein, a green, low-cost and room-temperature strategy was developed to exfoliate CNFs using deep eutectic solvents.

View Article and Find Full Text PDF

A novel carbazole-pyrimidine-based dual mode fluorescent probe for detection of acidic and basic pH in biological systems.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 China. Electronic address:

pH balance is an important factor in regulating the internal environment of body and maintaining the normal physiological activities, but pH cannot be detected in vivo without damaging the tissue. It is important to develop a pH probe with low toxicity, high sensitivity and targeting of organelles. In this research, a novel carbazole-pyrimidine-based probe PKZP was designed from 2-hydroxyl-3-pinanone which was derived from natural monoterpene α-pinene for detecting both acidic and basic pH in vivo.

View Article and Find Full Text PDF

Intelligent antibacterial coatings based on sensitive response and periodic fast drug release for long-term defense against corrosion induced by sulfate-reducing bacteria.

J Colloid Interface Sci

January 2025

Department of Materials Science and Engineering, Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048 PR China.

Pitting corrosion caused by sulfate-reducing bacteria (SRB) significantly shortens the lifespan of metallic pipelines. Antibacterial coatings containing S-responsive drug-loaded nanocontainers represent a promising method to mitigate SRB corrosion. However, the challenge of balancing rapid bactericide release with continuous antibacterial effect limits their practical application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!