During the last decades, the importance of modeling and simulation in clinical drug development, with the goal to qualitatively and quantitatively assess and understand mechanisms of pharmacokinetic processes, has strongly increased. However, this increase could not equally be observed for orally inhaled drugs. The objectives of this review are to understand the reasons for this gap and to demonstrate the opportunities that mathematical modeling of pharmacokinetics of orally inhaled drugs offers. To achieve these objectives, this review (i) discusses pulmonary physiological processes and their impact on the pharmacokinetics after drug inhalation, (ii) provides a comprehensive overview of published pharmacokinetic models, (iii) categorizes these models into physiologically based pharmacokinetic (PBPK) and (clinical data-derived) empirical models, (iv) explores both their (mechanistic) plausibility, and (v) addresses critical aspects of different pharmacometric approaches pertinent for drug inhalation. In summary, pulmonary deposition, dissolution, and absorption are highly complex processes and may represent the major challenge for modeling and simulation of PK after oral drug inhalation. Challenges in relating systemic pharmacokinetics with pulmonary efficacy may be another factor contributing to the limited number of existing pharmacokinetic models for orally inhaled drugs. Investigations comprising in vitro experiments, clinical studies, and more sophisticated mathematical approaches are considered to be necessary for elucidating these highly complex pulmonary processes. With this additional knowledge, the PBPK approach might gain additional attractiveness. Currently, (semi-)mechanistic modeling offers an alternative to generate and investigate hypotheses and to more mechanistically understand the pulmonary and systemic pharmacokinetics after oral drug inhalation including the impact of pulmonary diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477002 | PMC |
http://dx.doi.org/10.1208/s12248-015-9760-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!