Co-localization between the BOLD response and epileptiform discharges recorded by simultaneous intracranial EEG-fMRI at 3 T.

Neuroimage Clin

Department of Clinical Neurosciences, University of Calgary ; Hotchkiss Brain Institute, University of Calgary, Canada ; Seaman Family MR Research Centre, University of Calgary, Canada ; Department of Radiology, University of Calgary, Canada.

Published: January 2016

Objectives: Simultaneous scalp EEG-fMRI can identify hemodynamic changes associated with the generation of interictal epileptiform discharges (IEDs), and it has the potential of becoming a standard, non-invasive technique for pre-surgical assessment of patients with medically intractable epilepsy. This study was designed to assess the BOLD response to focal IEDs recorded via simultaneous intracranial EEG-functional MRI (iEEG-fMRI).

Methods: Twelve consecutive patients undergoing intracranial video EEG monitoring were recruited for iEEG-fMRI studies at 3 T. Depth, subdural strip, or grid electrodes were implanted according to our standard clinical protocol. Subjects underwent 10-60 min of continuous iEEG-fMRI scanning. IEDs were marked, and the most statistically significant clusters of BOLD signal were identified (Z-score 2.3, p value < 0.05). We assessed the concordance between the locations of the BOLD response and the IED. Concordance was defined as a distance <1.0 cm between the IED and BOLD response location. Negative BOLD responses were not studied in this project.

Results: Nine patients (7 females) with a mean age of 31 years (range 22-56) had 11 different types of IEDs during fMR scanning. The IEDs were divided based on the location of the active electrode contact into mesial temporal, lateral temporal, and extra-temporal. Seven (5 left) mesial temporal IED types were recorded in 5 patients (110-2092 IEDs per spike location). Six of these IEDs had concordant BOLD response in the ipsilateral mesial temporal structures, <1 cm from the most active contact. One of the two subjects with left lateral temporal IEDs had BOLD responses concordant with the location of the most active contact, as well other ipsilateral and contralateral sites. Notably, the remaining two subjects with extratemporal discharges showed no BOLD signal near the active electrode contact.

Conclusions: iEEG-fMRI is a feasible and low-risk method for assessment of hemodynamic changes of very focal IEDs that may not be recorded by scalp EEG. A high concordance rate between the location of the BOLD response and IEDs was seen for mesial temporal (6/7) IEDs. Significant BOLD activation was also seen in areas distant from the active electrode and these sites exhibited maximal BOLD activation in the majority of cases. This implies that iEEG-fMRI may further describe the areas involved in the generation of IEDs beyond the vicinity of the electrode(s).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375646PMC
http://dx.doi.org/10.1016/j.nicl.2015.03.002DOI Listing

Publication Analysis

Top Keywords

bold response
8
epileptiform discharges
8
recorded simultaneous
8
simultaneous intracranial
8
co-localization bold
4
response epileptiform
4
discharges recorded
4
intracranial eeg-fmri
4
eeg-fmri 3 t
4
3 t objectives
4

Similar Publications

The cerebral blood flow response to neuroactivation is reduced in cognitively normal men with β-amyloid accumulation.

Alzheimers Res Ther

January 2025

Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Valdemar Hansens Vej 1-23, Glostrup, 2600, Denmark.

Background: Accumulation of β-amyloid (Aβ) in the brain is a hallmark of Alzheimer's Disease (AD). Cerebral deposition of Aβ initiates deteriorating pathways which eventually can lead to AD. However, the exact mechanisms are not known.

View Article and Find Full Text PDF

Background: Primary cilia are solitary membrane-bound organelles emanating from the apical surface of most mammalian cells. They serve as sensory organelles sampling the extracellular environment and reprogramming the transcriptional machinery in response to changes in fluid flow. Ciliopathies, a group of genetic disorders characterized by disrupted cilia structure and/or function, share common phenotypes such as vascular dysfunction and cognitive impairment.

View Article and Find Full Text PDF

Concurrent optoacoustic tomography and magnetic resonance imaging of resting-state functional connectivity in the mouse brain.

Nat Commun

December 2024

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.

Resting-state functional connectivity (rsFC) has been essential to elucidate the intricacy of brain organization, further revealing clinical biomarkers of neurological disorders. Although functional magnetic resonance imaging (fMRI) remains a cornerstone in the field of rsFC recordings, its interpretation is often hindered by the convoluted physiological origin of the blood-oxygen-level-dependent (BOLD) contrast affected by multiple factors. Here, we capitalize on the unique concurrent multiparametric hemodynamic recordings of a hybrid magnetic resonance optoacoustic tomography platform to comprehensively characterize rsFC in female mice.

View Article and Find Full Text PDF

Background: Adolescent alcohol use is the norm, but only some develop a substance use disorder. The increased risk might reflect heightened mesocorticolimbic responses to reward-related cues but results published to date have been inconsistent.

Methods: Young social drinkers (age 18.

View Article and Find Full Text PDF

Individuals with borderline personality disorder (BPD) often hold pervasive and negative self-views and experience feelings of low connectedness toward others despite effective treatment. This study aimed to identify neural and affective mechanisms of identity disturbance in BPD that contribute to difficulties in relating to others. Participants diagnosed with BPD ( = 34) and nonclinical controls (NCC; = 35) completed a within-subject social feedback task inside a magnetic resonance imaging scanner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!