Background: In preparing novice anesthesiologists to perform their first ultrasound-guided axillary brachial plexus blockade, we hypothesized that virtual reality simulation-based training offers an additional learning benefit over standard training. We carried out pilot testing of this hypothesis using a prospective, single blind, randomized controlled trial.
Methods: We planned to recruit 20 anesthesiologists who had no experience of performing ultrasound-guided regional anesthesia. Initial standardized training, reflecting current best available practice was provided to all participating trainees. Trainees were randomized into one of two groups; (i) to undertake additional simulation-based training or (ii) no further training. On completion of their assigned training, trainees attempted their first ultrasound-guided axillary brachial plexus blockade. Two experts, blinded to the trainees' group allocation, assessed the performance of trainees using validated tools.
Results: This study was discontinued following a planned interim analysis, having recruited 10 trainees. This occurred because it became clear that the functionality of the available simulator was insufficient to meet our training requirements. There were no statistically significant difference in clinical performance, as assessed using the sum of a Global Rating Score and a checklist score, between simulation-based training [mean 32.9 (standard deviation 11.1)] and control trainees [31.5 (4.2)] (p = 0.885).
Conclusions: We have described a methodology for assessing the effectiveness of a simulator, during its development, by means of a randomized controlled trial. We believe that the learning acquired will be useful if performing future trials on learning efficacy associated with simulation based training in procedural skills.
Trial Registration: ClinicalTrials.gov identifier: NCT01965314. Registered October 17th 2013.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384236 | PMC |
http://dx.doi.org/10.1186/1471-2253-14-110 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!