Latest research in planet formation indicates that Mars formed within a few million years (Myr) and remained as a planetary embryo that never grew to a more massive planet. It can also be expected from dynamical models that most of Mars' building blocks consisted of material that formed in orbital locations just beyond the ice line which could have contained [Formula: see text] of HO. By using these constraints, we estimate the nebula-captured and catastrophically outgassed volatile contents during the solidification of Mars' magma ocean and apply a hydrodynamic upper atmosphere model for the study of the soft X-ray and extreme ultraviolet (XUV) driven thermal escape of the martian protoatmosphere during the early active epoch of the young Sun. The amount of gas that has been captured from the protoplanetary disk into the planetary atmosphere is calculated by solving the hydrostatic structure equations in the protoplanetary nebula. Depending on nebular properties such as the dust grain depletion factor, planetesimal accretion rates and luminosities, hydrogen envelopes with masses [Formula: see text] to [Formula: see text] could have been captured from the nebula around early Mars. Depending on the before mentioned parameters, due to the planets low gravity and a solar XUV flux that was [Formula: see text] times stronger compared to the present value, our results indicate that early Mars would have lost its nebular captured hydrogen envelope after the nebula gas evaporated, during a fast period of [Formula: see text]. After the solidification of early Mars' magma ocean, catastrophically outgassed volatiles with the amount of [Formula: see text] HO and [Formula: see text] CO could have been lost during [Formula: see text], if the impact related energy flux of large planetesimals and small embryos to the planet's surface lasted long enough, that the steam atmosphere could have been prevented from condensing. If this was not the case, then our results suggest that the timescales for HO condensation and ocean formation may have been shorter compared to the atmosphere evaporation timescale, so that one can speculate that sporadically periods, where some amount of liquid water may have been present on the planet's surface. However, depending on the amount of the outgassed volatiles, because of impacts and the high XUV-driven atmospheric escape rates, such sporadically wet surface conditions may have also not lasted much longer than [Formula: see text]. After the loss of the captured hydrogen envelope and outgassed volatiles during the first 100 Myr period of the young Sun, a warmer and probably wetter period may have evolved by a combination of volcanic outgassing and impact delivered volatiles [Formula: see text] ago, when the solar XUV flux decreased to values that have been [Formula: see text] times that of today's Sun.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375622 | PMC |
http://dx.doi.org/10.1016/j.pss.2013.09.008 | DOI Listing |
Sci Adv
January 2025
National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
Revealing the momentum-resolved electronic structure of infinite-layer nickelates is essential for understanding this class of unconventional superconductors but has been hindered by the formidable challenges in improving the sample quality. In this work, we report the angle-resolved photoemission spectroscopy of superconducting LaSrNiO films prepared by molecular beam epitaxy and in situ atomic-hydrogen reduction. The measured Fermi topology closely matches theoretical calculations, showing a large Ni [Formula: see text]-derived Fermi sheet that evolves from hole-like to electron-like along and a three-dimensional (3D) electron pocket centered at the Brillouin zone corner.
View Article and Find Full Text PDFSci Rep
January 2025
University of São Paulo, ICMC, São Carlos, 13566-590, Brazil.
Identifying driver genes is crucial for understanding oncogenesis and developing targeted cancer therapies. Driver discovery methods using protein or pathway networks rely on traditional network science measures, focusing on nodes, edges, or community metrics. These methods can overlook the high-dimensional interactions that cancer genes have within cancer networks.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.
We report the synthesis, crystal structure, and magnetic properties of a new Kitaev honeycomb cobaltate, KCoAsO, which crystallizes in two distinct forms: P2/c and R[Formula: see text] space groups. Magnetic measurements reveal ordering temperatures of ~ 14 K for the P2/c structure and ~ 10.5 K for the R[Formula: see text] structure.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computer Science and AI, SR University, Warangal, Telangana, India.
One of the most fatal diseases that affect people is skin cancer. Because nevus and melanoma lesions are so similar and there is a high likelihood of false negative diagnoses challenges in hospitals. The aim of this paper is to propose and develop a technique to classify type of skin cancer with high accuracy using minimal resources and lightweight federated transfer learning models.
View Article and Find Full Text PDFProc Biol Sci
January 2025
School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
In animals, metabolic rates during ontogeny often scale differently from the way they do in cross-species or population comparisons, with near-isometric scaling patterns more often observed during juvenile growth. In multiple social insect taxa, colony metabolic rate scales hypometrically across species or populations at the same developmental stage, but metabolic patterns during ontogeny have not been examined for any social insect species. We performed the first ontogenetic study of social metabolic scaling in harvester ant colonies () over 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!