Nestin, an intermediate filament protein, is a key regulator of various extracellular proteins that play important roles in cell growth and differentiation. In recent years, nestin has been widely accepted as a molecular marker for neural stem/progenitor cells. However, its function during embryogenesis remains largely unknown since its depletion is lethal after stage embryonic day 8.5 (E8.5). In order to understand the role of this protein in vivo, we compared the heart and brain tissues of control mice with those of mice overexpressing a human nestin cDNA transgene under the control of a ROSA26 promoter. In these tissues we examined the general histology and cell size, the presence of apoptotic cells by TUNEL assay, and the presence of progenitor cell markers like SOX2. Compared to controls, mouse embryos overexpressing the human nestin transgene have a larger size and display characteristic morphological changes including a larger heart and forebrain. In these tissues we found corresponding increases in the size of cardiomyocytes and brain cells, as well as indications of augmented cell proliferation. In contrast, apoptosis was not significantly altered. Co-staining brain sections with SOX2 and Ki67 showed that most of the proliferating cells in the forebrain were neural stem cells. Moreover, nestin overexpression was responsible for a marked activation of the PI3K/Akt signaling pathway. Taken together, the results of this study indicate that nestin plays an important role in the embryonic development of at least two mouse organs (heart and brain) through the regulation of cell proliferation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2015.03.044DOI Listing

Publication Analysis

Top Keywords

heart brain
12
cell proliferation
12
nestin overexpression
8
embryonic development
8
brain regulation
8
regulation cell
8
overexpressing human
8
human nestin
8
nestin
7
cell
6

Similar Publications

While autonomic dysregulation and repolarization abnormalities are observed in subarachnoid hemorrhage (SAH), their relationship remains unclear. We aimed to measure skin sympathetic nerve activity (SKNA), a novel method to estimate stellate ganglion nerve activity, and investigate its association with electrocardiogram (ECG) alterations after SAH. We recorded a total of 179 SKNA data from SAH patients at three distinct phases and compared them with 20 data from controls.

View Article and Find Full Text PDF

Inferior vena cava diameter in patients with chronic heart failure and chronic kidney disease: a retrospective study.

Eur J Med Res

January 2025

Medical Big Data Research Center, Medical Innovation Research Division, Chinese PLA General Hospital, 28 Fuxing RD., Beijing, 100853, China.

Background: Chronic kidney disease (CKD) carries the highest population attributable risk for mortality among all comorbidities in chronic heart failure (CHF). No studies about the association between inferior vena cava (IVC) diameter and all-cause mortality in patients with the comorbidity of CKD and CHF has been published.

Methods: In this retrospective cohort study, a total of 1327 patients with CHF and CKD were included.

View Article and Find Full Text PDF

2-[F]Fluoropropionic Acid PET Imaging of Doxorubicin-Induced Cardiotoxicity.

Mol Imaging Biol

January 2025

Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA.

Purpose: Treatment of pediatric cancers with doxorubicin is a common and predictable cause of cardiomyopathy. Early diagnosis of treatment-induced cardiotoxicity and intervention are major determinants for the prevention of advanced disease. The onset of cardiomyopathies is often accompanied by profound changes in lipid metabolism, including an enhanced uptake of short-chain fatty acids (SCFA).

View Article and Find Full Text PDF

Shenmai Injection Reduces Cardiomyocyte Apoptosis Induced by Doxorubicin through miR-30a/Bcl-2.

Chin J Integr Med

January 2025

Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.

Objective: To explore the molecular mechanism of Shenmai Injection (SMI) against doxorubicin (DOX) induced cardiomyocyte apoptosis.

Methods: A total of 40 specific pathogen-free (SPF) male Sprague Dawley (SD) male rats were divided into 5 groups based on the random number table, including the control group, the model group, miR-30a agomir group, SMI low-dose (SMI-L) group, and SMI high-dose (SMI-H) group, with 8 rats in each group. Except for the control group, the rats were injected weekly with DOX (2 mg/kg) in the tail vein for 4 weeks to induce myocardial injury, and were given different regimens of continuous intervention for 2 weeks.

View Article and Find Full Text PDF

Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!