AI Article Synopsis

Article Abstract

Toxocara canis and Toxocara cati are globally occurring intestinal nematodes of dogs and cats with a high zoonotic potential. Migrating larvae in the CNS of paratenic hosts, including humans, may cause neurotoxocarosis resulting in a variety of neurological symptoms. Toxocara canis exhibits a stronger affinity to the CNS than T. cati, causing more severe neurological symptoms in the mouse model. Pathomechanisms of neurotoxocarosis as well as host responses towards the respective parasite are mostly unknown. Therefore, the aim of this study was to characterise the pathogenesis at a transcriptional level using whole genome microarray expression analysis and identify differences and similarities between T. canis- and T. cati-infected brains. Microarray analysis was conducted in cerebra and cerebella of infected C57Bl/6J mice 42daysp.i. revealing more differentially transcribed genes for T. canis- than T. cati-infected brains. In cerebra and cerebella of T. canis-infected mice, a total of 2304 and 1954 differentially transcribed genes, respectively, were identified whereas 113 and 760 differentially transcribed genes were determined in cerebra and cerebella of T. cati-infected mice. Functional annotation analysis revealed major differences in host responses in terms of significantly enriched biological modules. Up-regulated genes were mainly associated with the terms "immune and defence response", "sensory perception" as well as "behaviour/taxis" retrieved from the Gene Ontology database. These observations indicate a strong immune response in both infection groups with T. cati-infected brains revealing less severe reactions. Down-regulated genes in T. canis-infected cerebra and cerebella revealed a significant enrichment for the Gene Ontology term "lipid/cholesterol biosynthetic process". Cholesterol is a highly abundant and important component in the brain, representing several functions. Disturbances of synthesis as well as concentration changes may lead to dysfunction in signal transduction and neurodegenerative disease. Overall, only a minor overlap of differentially transcribed genes was observed between the two infection groups in both brain parts. Most genes are regulated individually in each infection group, supporting the evident differences of both roundworm species observed in the paratenic host in previous studies. In summary the present study underlines the differences in pathogenicity of T. canis and T. cati. It furthermore provides a comprehensive basis for future analyses over the course of infection as well as functional tests to identify gene regulatory circuits that are crucial for pathogenesis of neurotoxocarosis. The results of this study provide a promising foundation for further specific research to evaluate the particular pathogenetic mechanisms and to identify possible therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpara.2015.02.009DOI Listing

Publication Analysis

Top Keywords

cerebra cerebella
16
differentially transcribed
16
transcribed genes
16
toxocara canis
12
cati-infected brains
12
expression analysis
8
major differences
8
canis toxocara
8
toxocara cati
8
neurological symptoms
8

Similar Publications

Risk factors of the appearance of anencephaly in Tunisia.

Tunis Med

January 2025

Department of embryo-fetopathology, La Rabta Maternity and Neonatology Center, El Manar II University, 1007 Tunis, Tunisia.

Introduction: Anencephaly is a serious developmental defect of the central nervous system in which the brain and cranial vault are grossly malformed. The cerebrum and cerebellum are reduced or absent, but the hindbrain is present. Anencephaly is a part of the neural tube defect spectrum.

View Article and Find Full Text PDF

Differentially Expressed Nedd4-binding Protein Ndfip1 Protects Neurons Against Methamphetamine-induced Neurotoxicity.

Neurotox Res

January 2025

Molecular Neuropsychiatry Section, Intramural Research Program, NIH/ NIDA, 21224, Baltimore, MD, U.S.A.

To identify factors involved in methamphetamine (METH) neurotoxicity, we comprehensively searched for genes which were differentially expressed in mouse striatum after METH administration using differential display (DD) reverse transcription-PCR method and sequent single-strand conformation polymorphism analysis, and found two DD cDNA fragments later identified as mRNA of Nedd4 (neural precursor cell expressed developmentally downregulated 4) WW domain-binding protein 5 (N4WBP5), later named Nedd4 family-interacting protein 1 (Ndfip1). It is an adaptor protein for the binding between Nedd4 of ubiquitin ligase (E3) and target substrate protein for ubiquitination. Northern blot analysis confirmed drastic increases in Ndfip1 mRNA in the striatum after METH injections, and in situ hybridization histochemistry showed that the mRNA expression was increased in the hippocampus and cerebellum at 2 h-2 days, in the cerebral cortex and striatum at 18 h-2 days after single METH administration.

View Article and Find Full Text PDF

Neuronal dynamics of cerebellum and medial prefrontal cortex in adaptive motor timing.

Nat Commun

January 2025

Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.

Precise temporal control of sensorimotor coordination and adaptation is a fundamental basis of animal behavior. How different brain regions are involved in regulating the flexible temporal adaptation remains elusive. Here, we investigated the neuronal dynamics of the cerebellar interposed nucleus (IpN) and the medial prefrontal cortex (mPFC) neurons during temporal adaptation between delay eyeblink conditioning (DEC) and trace eyeblink conditioning (TEC).

View Article and Find Full Text PDF

The cerebellum is involved in non-motor processing, supported by topographically distinct cerebellar activations and closed-loop circuits between the cerebellum and the cortex. Disruptions to cerebellar function may negatively impact prefrontal function and processing. Cerebellar resources may be important for offloading cortical processing, providing crucial scaffolding for normative performance and function.

View Article and Find Full Text PDF

The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!