Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In nature, photosynthetic organisms cope with highly variable light environments--intensities varying over orders of magnitudes as well as rapid fluctuations over seconds-to-minutes--by alternating between (a) highly effective absorption and photochemical conversion of light levels limiting to photosynthesis and (b) powerful photoprotective thermal dissipation of potentially damaging light levels exceeding those that can be utilized in photosynthesis. Adjustments of the photosynthetic apparatus to changes in light environment involve biophysical, biochemical, and structural adjustments. We used electron micrographs to assess overall thylakoid grana structure in evergreen species that exhibit much stronger maximal levels of thermal energy dissipation than the more commonly studied annual species. Our findings indicate an association between partial or complete unstacking of thylakoid grana structure and strong reversible thermal energy dissipation that, in contrast to what has been reported for annual species with much lower maximal levels of energy dissipation, is similar to what is seen under photoinhibitory conditions. For a tropical evergreen with tall grana stacks, a loosening, or vertical unstacking, of grana was seen in sun-grown plants exhibiting pronounced pH-dependent, rapidly reversible thermal energy dissipation as well as for sudden low-to-high-light transfer of shade-grown plants that responded with photoinhibition, characterized by strong dark-sustained, pH-independent thermal energy dissipation and photosystem II (PSII) inactivation. On the other hand, full-sun exposed subalpine confers with rather short grana stacks transitioned from autumn to winter via conversion of most thylakoids from granal to stromal lamellae concomitant with photoinhibitory photosynthetic inactivation and sustained thermal energy dissipation. We propose that these two types of changes (partial or complete unstacking of grana) in thylakoid arrangement are both associated with the strong non-photochemical quenching (NPQ) of chlorophyll fluorescence (a measure of photoprotective thermal energy dissipation) unique to evergreen species rather than with PSII inactivation per se.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2015.03.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!