The study demonstrates the feasibility of prolonging gastric residence time and release rate of metronidazole (Mz) by preparing floating raft system (FRS) using ion-sensitive in situ gel forming polymers. FRSs contained 3, 4, 5 and 0.5, 0.75, 1% w/v sodium alginate (Alg) and gellan gum (G), respectively, 0.25% w/v sodium citrate and calcium carbonate (C). Lipids: glyceryl mono stearate (GMS), Precirol(®) and Compritol(®) were incorporated into G-based formulations (G1%C1%). Mz:lipid ratio was 1:1, except for Mz:GMS, ratios of 1:1.5 and 1:2 were also investigated. Buoyancy, gelation capacity and viscosity parameters were evaluated. Drug release and kinetics for selected formulae were examined. The selected lipid containing formula was subjected to an accelerated stability testing. Alg4%C2% FRS exhibited short gelation lag time (3s), long duration (>24h), floating lag time 1m in and duration >24h, and a reliable sustained drug release (MDT 6h). Gellan gum FRSs achieved successful floating gastroretention, but failed to achieve the required gelation capacity. Incorporation of GMS (Mz:GMS 1:1) enhanced the gelation lag time and duration (6s and >24h, respectively), keeping sustained drug release and formulation stability. The improved characteristics of the selected FRS make them excellent candidates for gastric targeting to eradicate Helicobacter pylori.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2015.04.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!