Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ion channels have been shown to be involved in oncogenesis and efforts are being poured in to target the ion channels. There are many clinically approved drugs with ion channels as "off" targets. The question is, can these drugs be repurposed to inhibit ion channels for cancer treatment? Repurposing of drugs will not only save investors' money but also result in safer drugs for cancer patients. Advanced bioinformatics techniques and availability of a plethora of open access data on FDA approved drugs for various indications and omics data of large number of cancer types give a ray of hope to look for possibility of repurposing those drugs for cancer treatment. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2015.03.034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!