Deconvolving the recognition of DNA shape from sequence.

Cell

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA. Electronic address:

Published: April 2015

Protein-DNA binding is mediated by the recognition of the chemical signatures of the DNA bases and the 3D shape of the DNA molecule. Because DNA shape is a consequence of sequence, it is difficult to dissociate these modes of recognition. Here, we tease them apart in the context of Hox-DNA binding by mutating residues that, in a co-crystal structure, only recognize DNA shape. Complexes made with these mutants lose the preference to bind sequences with specific DNA shape features. Introducing shape-recognizing residues from one Hox protein to another swapped binding specificities in vitro and gene regulation in vivo. Statistical machine learning revealed that the accuracy of binding specificity predictions improves by adding shape features to a model that only depends on sequence, and feature selection identified shape features important for recognition. Thus, shape readout is a direct and independent component of binding site selection by Hox proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4422406PMC
http://dx.doi.org/10.1016/j.cell.2015.02.008DOI Listing

Publication Analysis

Top Keywords

dna shape
16
shape features
12
shape
8
dna
6
binding
5
deconvolving recognition
4
recognition dna
4
shape sequence
4
sequence protein-dna
4
protein-dna binding
4

Similar Publications

Insect herbivory has attracted enormous attention from researchers due to its effects on plant fitness. However, there remain questions such as what are the most important leaf traits that determine consumption levels, whether there are latitudinal gradients in herbivore pressure, or whether there are differences in susceptibility between hybrids and their parental species. In this work we address all these issues in two species of Mediterranean Quercus (Q.

View Article and Find Full Text PDF

Changes in Gut Microbiota in Peruvian Cattle Genetic Nucleus by Breed and Correlations with Beef Quality.

Vet Sci

November 2024

Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru.

This study evaluated the gut microbiota and meat quality traits in 11 healthy female cattle from the Huaral region of Peru, including 5 Angus, 3 Braunvieh, and 3 F1 Simmental × Braunvieh. All cattle were 18 months old and maintained on a consistent lifelong diet. Meat quality traits, including loin area, fat thickness, muscle depth, and marbling, were assessed in vivo using ultrasonography.

View Article and Find Full Text PDF

Phage-mediated intercellular CRISPRi for biocomputation in bacterial consortia.

Nucleic Acids Res

December 2024

Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.

Coordinated actions of cells in microbial communities and multicellular organisms enable them to perform complex tasks otherwise difficult for single cells. This has inspired biological engineers to build cellular consortia for larger circuits with improved functionalities while implementing communication systems for coordination among cells. Here, we investigate the signalling dynamics of a phage-mediated synthetic DNA messaging system and couple it with CRISPR interference to build distributed circuits that perform logic gate operations in multicellular bacterial consortia.

View Article and Find Full Text PDF

Chromatin is the complex of DNA and associated proteins found in the nuclei of living organisms. How it is organized is a major research field as it has implications for replication, repair, and gene expression. This review summarizes the current state of the chromatin organization field, with a special focus on chromatin motor complexes cohesin and condensin.

View Article and Find Full Text PDF

Dryopteris×subdiffracta (Dryopteridaceae), a new natural hybrid fern from Guangxi, China.

PhytoKeys

December 2024

Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China Kunming Institute of Botany, Chinese Academy of Sciences Kunming China.

A new natural hybrid fern, Dryopteris×subdiffracta (Dryopteridaceae), is reported from Guangxi, China. Molecular phylogenetic analysis based on DNA sequences from the low-copy nuclear marker and plastid genome revealed respectively that and are parents of the new hybrid, with as the maternal parent. Cytometric analysis of the nuclear DNA content indicated that might be a diploid hybrid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!