Body size can be an important factor controlling consumer stoichiometry. In holometabolous insects, body size is typically associated with nutrient storage. Consumer stoichiometry is known to vary within species across a range of body sizes; however, the contribution of nutrient storage to this variation is not well understood. We used the fifth-instar larvae of the oak weevil (Coleoptera: Curculio davidi Fairmaire), which is characterized by a high capacity for nutrient storage, to investigate the effect of shifts in nutrient storage with body mass on variations in larva stoichiometry. Our results showed that weevil larvae with larger body mass had a lower carbon (C) content, reflecting decreases in the sequestration rate of C-rich lipids. Larger larvae had elevated concentrations of nitrogen (N), sulfur (S), and protein. The similar patterns of variation in elemental composition and macromolecule storage with body weight indicate that the shift in nutrient storage is the main factor causing the variation in larval stoichiometry with body weight. This finding was further supported by the low variation in residual larval biomass C, N, and S concentrations after lipid extraction. These results help decipher the physiological mechanism of stoichiometric regulation in growing organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535141 | PMC |
http://dx.doi.org/10.1093/jisesa/iev004 | DOI Listing |
RSC Adv
January 2025
Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
β-Carotene (βC), a natural carotenoid, is the most important and effective vitamin A precursor, known also for its antioxidant properties. However, its poor water solubility, chemical instability, and low bioavailability limit its effectiveness as an orally delivered functional nutrient. Nanoparticle encapsulation improves βC's bioaccessibility by enhancing its stability and solubility.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Biology, University of Padova, 35131 Padova, Italy. Electronic address:
The fermentation process in alcoholic beverage production converts sugars into ethanol and CO, releasing significant amounts of greenhouse gases. Here, Cupriavidus necator DSM 545 was grown autotrophically using gas derived from alcoholic fermentation, using a fed-batch bottle system. Nutrient starvation was applied to induce intracellular accumulation of poly(3-hydroxybutyrate) (PHB), a bioplastic polymer, for bioconversion of CO-rich waste gas into PHB.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia; Department of Environmental Science, Policy and Management, University of California at Berkeley, USA.
Wetland macrophytes play a critical role in the performance of treatment wetlands (TWs), primarily through nutrient uptake. However, this retention is temporary, as nutrients are released back into the water upon the decomposition of plant litter. The removal of stored nutrients from TWs can be efficiently achieved by harvesting plants during the peak of the growing season, albeit with significant ecological disturbance.
View Article and Find Full Text PDFFoods
January 2025
Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100080, China.
As the quality of life continues to improve globally, there is an increasing demand for nutritious and high-quality food products. Peanut butter, a widely consumed and nutritionally valuable product, must meet stringent quality standards and exhibit excellent stability to satisfy consumer expectations and maintain its competitive position in the market. However, its high fat content, particularly unsaturated fatty acids, makes it highly susceptible to quality deterioration during storage.
View Article and Find Full Text PDFBMC Biotechnol
January 2025
Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany.
Background: In the fermentation industry, the demand to replace expensive complex media components is increasing for alternative nutrient sources derived from waste or side streams, such as corn steep liquor (CSL). However, the use of CSL is associated with common problems of side products, such as batch-to-batch variations and compositional inconsistencies. In this study, to detect batch-to-batch variations in CSL for Ogataea polymorpha cultivations, a "fingerprinting" system was developed by employing the Respiration Activity Monitoring System designed for shake flasks (RAMOS) and 96-well microtiter plates (µTOM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!