Introduction: Drug-induced effects on the cardiovascular system remain a major cause of drug attrition. While hemodynamic (blood pressure (BP) and heart rate (HR)) and electrophysiological methods have been used in testing drug safety for years, animal models for assessing myocardial contractility are used less frequently and their translation to humans has not been established. The goal of these studies was to determine whether assessment of contractility and hemodynamics, when measured across different laboratories using the same protocol, could consistently detect drug-induced changes in the inotropic state of the heart using drugs known to have clinically relevant positive and negative effects on myocardial contractility.

Methods: A 4×4 double Latin square design (n=8) design using Beagle dogs was developed. Drugs were administrated orally. Arterial blood pressure, left ventricular pressure (LVP) and the electrocardiogram were assessed. Each of the six laboratories studied at least 2 drugs (one positive inotrope (pimobendan or amrinone) and one negative inotrope) (itraconazole or atenolol) at 3 doses selected to match clinical exposure data and a vehicle control. Animals were instrumented with an ITS telemetry system, DSI's D70-PCTP system or DSI's Physiotel Digital system. Data acquisition and analysis systems were Ponemah, Notocord or EMKA.

Results: Derived parameters included: diastolic, systolic and mean arterial BP, peak systolic LVP, HR, end-diastolic LVP, and LVdP/dtmax as the primary contractility index. Blood samples were drawn to confirm drug exposures predicted from independent pharmacokinetic studies. Across the laboratories, a consistent change in LVdP/dtmax was captured despite some differences in the absolute values of some of the hemodynamic parameters prior to treatment.

Discussion: These findings indicate that this experimental model, using the chronically instrumented conscious dog, can accurately and consistently detect changes in cardiac contractility, across multiple sites and instrumentation systems, and that data obtained in this model may also translate to clinical outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vascn.2015.02.002DOI Listing

Publication Analysis

Top Keywords

drug-induced changes
8
changes cardiac
8
blood pressure
8
consistently detect
8
system dsi's
8
evaluation drug-induced
4
cardiac inotropy
4
inotropy dogs
4
dogs hesi-sponsored
4
hesi-sponsored consortium
4

Similar Publications

CXCR2 Activated JAK3/STAT3 Signaling Pathway Exacerbating Hepatotoxicity Associated with Tacrolimus.

Drug Des Devel Ther

January 2025

Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.

Purpose: Tacrolimus could induce hepatotoxicity during clinical use, and the mechanism was still unclear, which posed new challenge for the prevention and treatment of tacrolimus-induced hepatotoxicity. The aim of this study was to investigate the mechanism of tacrolimus-induced hepatotoxicity and provide reference for drug development target.

Methods: In this study, biochemical analysis, pathological staining, immunofluorescent staining, immunohistochemical staining, transcriptomic analysis, Western blotting was used to investigate the mechanism of tacrolimus-induced hepatotoxicity in gene knockout mice and Wistar rats.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Cisplatin (CP), a widely used antineoplastic agent, is a leading cause of drug-induced liver injury (DILI) due to its hepatotoxic effects. Licorice (GC), an established remedy in traditional Chinese medicine (TCM), has shown promise in addressing liver diseases and DILI. Nonetheless, the specific active components and underlying mechanisms of GC in mitigating CP-induced liver injury remain inadequately investigated.

View Article and Find Full Text PDF

Nicotine, the main toxic component of tobacco, directly or indirectly causes adverse effects on the liver metabolism. Melatonin, secreted by the pineal gland, has anti-apoptotic activity as well as antioxidant activity. The aim of this study was to reveal the antiapoptotic effects of melatonin in rats with experimentally induced chronic liver damage with nicotine.

View Article and Find Full Text PDF

Background: Long-term use of levodopa, a metabolic precursor of dopamine (DA) for alleviation of motor symptoms in Parkinson's disease (PD), can cause a serious side effect known as levodopa-induced dyskinesia (LID). With the development of LID, high-frequency gamma oscillations (~100 Hz) are registered in the motor cortex (MCx) in patients with PD and rats with experimental PD. Studying alterations in the activity within major components of motor networks during transition from levodopa-off state to dyskinesia can provide useful information about their contribution to the development of abnormal gamma oscillations and LID.

View Article and Find Full Text PDF

Microcystin-leucine arginine (MC-LR) poses a serious threat to aquatic animals during cyanobacterial blooms. Recently, biochar (BC), derived from rice straw, has emerged as a potent adsorbent for eliminating hazardous contaminants from water. To assess the joint hepatotoxic effects of environmentally relevant concentrations of MC-LR and BC on fish, male adult zebrafish () were sub-chronically co-exposed to varying concentrations of MC-LR (0, 1, 5, and 25 μg/L) and BC (0 and 100 μg/L) in a fully factorial experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!