The objective of this study was to determine the larvicidal activity of an active compound isolated from Cercis chinensis heartwood and its structurally related analogs against 4th-stage Aedes aegypti, Culex pipiens pallens, and Ae. togoi. The larvicidal compound of C. chinensis was isolated with the use of various chromatographic techniques and identified as analogs of 1,4-naphthalenedione. Based on the median lethal concentration (LC(50)) values of commercially procured analogs against Ae. aegypti larvae, the most toxic analog was 2-bromo-1,4-naphthalenedione (1.19 µg/ml); followed by 5-hydroxy-1,4-naphthalenedione (1.72 µg/ml); 2-methyl-1,4-naphthalenedione (9.12 µg/ml); 2-hydroxy-1,4-naphthalenedione (10.76 µg/ml); and 2-methoxy-1,4-naphthalenedione (12.50 µg/ml). Similar results were observed against Cx. p. pallens and Ae. togoi larvae with 1,4-naphthalenedione analogs. These results also showed that 1,4-naphthalenedione analogs were less toxic than the organophosphate pirimiphos-methyl. Nonetheless, naturally occurring C. chinensis-derived materials and 1,4-naphthalenedione analogs have potential for development as mosquito larvicidal agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2987/14-6438.1 | DOI Listing |
ACS Infect Dis
January 2025
Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Vidya Vihar 333031, (RJ) India.
Antimicrobial drug resistance is a significant global health challenge, causing hundreds of thousands of deaths annually and severely impacting healthcare systems worldwide. Several reported antimicrobial compounds have a guanidine motif, as the positive charge on guanidine promotes cell lysis. Therefore, pyrrole- and indole-based allylidene hydrazine carboximidamide derivatives with guanidine motifs are proposed as antimicrobial agents that mimic cationic antimicrobial peptides (CAMPs).
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.
In this article, a neoacetalization-based method for post-SELEX modification of aptamers is introduced. Three modified quinine binding aptamer scaffolds were synthesized by replacing three different nucleosides of the binding site with a (2,3)-4-(methoxyamino)butane-1,2,3-triol residue. These aptamer scaffolds were incubated in different aldehyde mixtures with and without quinine, allowing the reversible formation of -methoxy-1,3-oxazinane (MOANA) nucleoside analogues through dynamic combinatorial chemistry.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Faculty of Pharmacy, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan.
Atopic dermatitis (AD), also known as eczema, is a chronic or relapsing inflammatory skin disease characterized by repeated exacerbations and remissions. Here, we investigated the effects of squid phospholipids (PLs) extracted from Todarodes pacificus on AD. The composition of squid PLs was analyzed using thin-layer chromatography and high-performance liquid chromatography, and the effects of PLs on AD were investigated using a rat paw edema model and an AD-like mouse model (NC/Nga mice).
View Article and Find Full Text PDFJ Sports Med Phys Fitness
January 2025
Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy.
Introduction: Sports injuries involving bi-articular muscles like the hip flexors, hamstrings, quadriceps, and gastrocnemius significantly affect athletes' performance and quality of life. Comprehensive rehabilitation is crucial for a pain-free return to play (RTP). Over the past 15 years, platelet-rich plasma (PRP) has emerged for its potential in tissue regeneration.
View Article and Find Full Text PDFAnesthesiology
January 2025
Takeda Development Center Americas, Inc., Lexington, MA, USA.
Background: Orexin neuropeptides help regulate sleep/wake states, respiration, and pain. However, their potential role in regulating breathing, particularly in perioperative settings, is not well understood. TAK-925 (danavorexton), a novel, orexin receptor 2-selective agonist, directly activates neurons associated with respiratory control in the brain and improves respiratory parameters in rodents undergoing fentanyl-induced sedation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!