This paper identifies the required configuration and orientation of α-glucosidase inhibitors, miglitol, α-1-C-butyl-DNJ, and α-1-C-butyl-LAB for binding to ntSI (isomaltase). Molecular dynamics (MD) calculations suggested that the flexibility around the keyhole of ntSI is lower than that of ctSI (sucrase). Furthermore, a molecular-docking study revealed that a specific binding orientation with a CH-π interaction (Trp370 and Phe648) is a requirement for achieving a strong affinity with ntSI. On the basis of these results, a new class of nortropane-type iminosugars, labystegines, hybrid iminosugars of LAB and calystegine, have been designed and synthesized efficiently from sugar-derived cyclic nitrones with intramolecular 1,3-dipolar cycloaddition or samarium iodide catalyzed reductive coupling reaction as the key step. Biological evaluation showed that our newly designed 3(S)-hydroxy labystegine (6a) inherited the selectivity against intestinal α-glucosidases from LAB, and its inhibition potency was 10 times better than that of miglitol. Labystegine, therefore, represents a promising new class of nortropane-type iminosugar for improving postprandial hyperglycemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.5b00342 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!