Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a high mortality rate. Signalling pathways activated by several tyrosine kinase receptors are known to be involved in lung fibrosis, and this knowledge has led to the development of the triple tyrosine kinase inhibitor nintedanib, an inhibitor of vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor (FGFR), for the treatment of IPF. Pulmonary surfactant protein D (SP-D), an important biomarker of IPF, reportedly attenuates bleomycin-induced pulmonary fibrosis in mice. In this study, we investigated whether nintedanib modulates SP-D expression in human lung epithelial (A549) cells using quantitative real-time reverse transcriptase polymerase chain reaction and western blotting. To investigate the mechanisms underlying the effects of nintedanib, we evaluated the phosphorylation of c-Jun N-terminal kinase (JNK) and its downstream target c-Jun. The effect of the JNK inhibitor SP600125 on c-Jun phosphorylation was also tested. Activation of activator protein-1 (AP-1) was examined using an enzyme-linked immunosorbent assay-based test, and cell proliferation assays were performed to estimate the effect of nintedanib on cell proliferation. Furthermore, we treated mice with nintedanib to examine its in vivo effect on SP-D levels in lungs. These experiments showed that nintedanib up-regulated SP-D messenger RNA expression in a dose-dependent manner at concentrations up to 5 μM, with significant SP-D induction observed at concentrations of 3 μM and 5 μM, in comparison with that observed in vehicle controls. Nintedanib stimulated a rapid increase in phosphorylated JNK in A549 cells within 30 min of treatment and stimulated c-Jun phosphorylation, which was inhibited by the JNK inhibitor SP600125. Additionally, nintedanib was found to activate AP-1. A549 cell proliferation was not affected by nintedanib at any of the tested concentrations. Moreover, blocking FGFR, PDGFR, and VEGFR function did not affect nintedanib-induced SP-D expression, suggesting that nintedanib mediates its effects through a mechanism that is distinct from its known role as a tyrosine kinase inhibitor. Nintedanib is also reported to inhibit Src kinase although pre-treatment of cells with a Src kinase inhibitor had no effect on nintedanib-induced SP-D expression. Increased expression of SFTPD mRNA and SP-D protein in the lungs of nintedanib-treated mice was also observed. In this work, we demonstrated that nintedanib up-regulated SP-D expression in A549 cells via the JNK-AP-1 pathway and did not affect cell proliferation. This is the first report describing SP-D induction by nintedanib.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pupt.2015.03.001DOI Listing

Publication Analysis

Top Keywords

sp-d expression
16
cell proliferation
16
nintedanib
14
tyrosine kinase
12
kinase inhibitor
12
growth factor
12
factor receptor
12
a549 cells
12
sp-d
10
nintedanib modulates
8

Similar Publications

Airway epithelium damage in acute respiratory distress syndrome.

Crit Care

October 2024

Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium.

Background: The airway epithelium (AE) fulfils multiple functions to maintain pulmonary homeostasis, among which ensuring adequate barrier function, cell differentiation and polarization, and actively transporting immunoglobulin A (IgA), the predominant mucosal immunoglobulin in the airway lumen, via the polymeric immunoglobulin receptor (pIgR). Morphological changes of the airways have been reported in ARDS, while their detailed features, impact for mucosal immunity, and causative mechanisms remain unclear. Therefore, this study aimed to assess epithelial alterations in the distal airways of patients with ARDS.

View Article and Find Full Text PDF

The Role of Pulmonary Collectins, Surfactant Protein A (SP-A) and Surfactant Protein D (SP-D) in Cancer.

Cancers (Basel)

September 2024

Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Poland.

Article Synopsis
  • Surfactant proteins A and D (SP-A and SP-D) are pattern-recognition molecules that help the immune system recognize and clear abnormal or pathogen cells, particularly in the lungs.
  • These proteins contain four distinct structural domains and are produced by certain lung cells, contributing to surfactant function and preventing lung collapse.
  • The review discusses how SP-A and SP-D have both anti- and pro-cancer effects and explores their potential roles in diagnosing and treating various types of cancer.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of the TLR7/IL-23/IL-17 signaling pathway in Acute Respiratory Distress Syndrome (ARDS) patients to understand its clinical significance.
  • A comparison was made between 85 ARDS patients and 85 healthy participants, revealing higher levels of TLR7 mRNA and inflammatory markers in ARDS patients, especially in severe cases.
  • Findings suggest that the activation of this signaling pathway is linked to disease severity and poor prognosis, indicating it as a potential risk factor for survival outcomes in ARDS patients.
View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) imposes a substantial burden on patients and healthcare systems. Spirometry is the most widely used test to diagnose the disease; however, a surrogate marker is required to predict the disease pattern and progression. The aim of the current study was to explore the association of elevated levels of plasma surfactant protein D (SP-D) with gene expression of osteoclast-associated receptor (OSCAR) and lung functions as potential diagnostic biomarkers of COPD.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD), an inflammatory lung disease, causes approximately 3 million deaths each year; however, its pathological mechanisms are not fully understood. In this study, we examined whether HX110B, a mixture of Taraxacum officinale, Dioscorea batatas, and Schizonepeta tenuifolia extracts, could suppress porcine pancreatic elastase (PPE)-induced emphysema in mice and its mechanism of action. The therapeutic efficacy of HX110B was tested using a PPE-induced emphysema mouse model and human bronchial epithelial cell line BEAS-2B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!