A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cardiovascular disease and impoverishment averted due to a salt reduction policy in South Africa: an extended cost-effectiveness analysis. | LitMetric

Cardiovascular disease and impoverishment averted due to a salt reduction policy in South Africa: an extended cost-effectiveness analysis.

Health Policy Plan

Department of Global Health, University of Washington, Seattle, WA, USA and Global Health Sciences, The University of California, San Francisco, CA, USA.

Published: February 2016

The South African Government recently set targets to reduce cardiovascular disease (CVD) by lowering salt consumption. We conducted an extended cost-effectiveness analysis (ECEA) to model the potential health and economic impacts of this salt policy. We used surveys and epidemiologic studies to estimate reductions in CVD resulting from lower salt intake. We calculated the average out-of-pocket (OOP) cost of CVD care, using facility fee schedules and drug prices. We estimated the reduction in OOP expenditures and government subsidies due to the policy. We estimated public and private sector costs of policy implementation. We estimated financial risk protection (FRP) from the policy as (1) cases of catastrophic health expenditure (CHE) averted or (2) cases of poverty averted. We also performed a sensitivity analysis. We found that the salt policy could reduce CVD deaths by 11%, with similar health gains across income quintiles. The policy could save households US$ 4.06 million (2012) in OOP expenditures (US$ 0.29 per capita) and save the government US$ 51.25 million in healthcare subsidies (US$ 2.52 per capita) each year. The cost to the government would be only US$ 0.01 per capita; hence, the policy would be cost saving. If the private sector food reformulation costs were passed on to consumers, food expenditures would increase by <0.2% across all income quintiles. Preventing CVD could avert 2400 cases of CHE or 2000 cases of poverty yearly. Our results were sensitive to baseline CVD mortality rates and the cost of treatment. We conclude that, in addition to health gains, population salt reduction can have positive economic impacts-substantially reducing OOP expenditures and providing FRP, particularly for the middle class. The policy could also provide large government savings on health care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724166PMC
http://dx.doi.org/10.1093/heapol/czv023DOI Listing

Publication Analysis

Top Keywords

cardiovascular disease
8
policy
8
extended cost-effectiveness
8
cost-effectiveness analysis
8
salt policy
8
oop expenditures
8
private sector
8
government us$
8
salt
5
us$
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!