Accurate monitoring and modeling of soil-plant systems are a key unresolved issue that currently limits the development of a comprehensive view of the interactions between soil and atmosphere, with a number of practical consequences including the difficulties in predicting climatic change patterns. This paper presents a case study where time-lapse minimal-invasive 3D micro-electrical tomography (ERT) is used to monitor rhizosphere eco-hydrological processes in an apple orchard in the Trentino region, Northern Italy. In particular we aimed at gaining a better understanding of the soil-vegetation water exchanges in the shallow critical zone, as part of a coordinated effort towards predicting climate-induced changes on the hydrology of Mediterranean basins (EU FP7 CLIMB project). The adopted strategy relied upon the installation of a 3D electrical tomography apparatus consisting of four mini-boreholes carrying 12 electrodes each plus 24 mini-electrodes on the ground surface, arranged in order to image roughly a cubic meter of soil surrounding a single apple tree. The monitoring program was initially tested with repeated measurements over about one year. Subsequently, we performed three controlled irrigation tests under different conditions, in order to evaluate the water redistribution under variable root activities and climatic conditions. Laboratory calibration on soil samples allowed us to translate electrical resistivity variations into moisture content changes, supported also by in-situ TDR measurements. Richards equation modeling was used also to explain the monitoring evidence. The results clearly identified the effect of root water uptake and the corresponding subsoil region where active roots are present, but also marked the need to consider the effects of different water salinity in the water infiltration process. We also gained significant insight about the need to measure quantitatively the plant evapotranspiration in order to close the water balance and separate soil structure effects (primarily, hydraulic conductivity) from water dynamics induced by living plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2015.03.113 | DOI Listing |
Microorganisms
December 2024
Division of Biotechnology and Advanced Institute of Environment and Bioscience, Jeonbuk National University, Iksan 54596, Jeonbuk, Republic of Korea.
A Gram-positive, rod-shaped, and obligate anaerobic bacterial strain OS1-26 was isolated from apple orchard soil in Iksan, South Korea. Interestingly, strain OS1-26 was observed to possess the functional genes involved in biological nitrogen fixation (BNF), including , which was actively transcribed during the anaerobic cultivation with excessive production of extracellular NH despite of presence of other fixed N nutrients. The BNF of strain OS1-26 was distinguished from the other well-known diazotrophs, such as and .
View Article and Find Full Text PDFSci Rep
December 2024
Institute for Alpine Environment, Eurac Research, Drususallee/Viale Druso 1, Bolzano/Bozen, 39100, Italy.
Orchard meadows, a specific agroforestry system characterised by scattered high-stem fruit trees, are a traditional element of several cultural landscapes in Central Europe and provide important ecosystem services. Since the middle of the 20th century, orchard meadows have drastically declined across Europe. Spatial information on the drivers and patterns of such a decline in several regions in Central Europe is lacking.
View Article and Find Full Text PDFPlant Dis
December 2024
Cornell University, Plant Pathology-Geneva, 630 West North Street, 221 Barton Lab, Geneva, New York, United States, 14456;
Fire blight is an economically devastating disease caused by the bacterium . Infections lead can shoot blight and, when unmanaged, become systemic and can quickly cause tree death and spread through an orchard via active infections sites producing bacterial ooze. With climate change, increasingly popular high-density training systems, and the susceptibility of many consumers desired apple cultivars, shoot blight management has become exceptionally challenging despite the diverse management tactics available.
View Article and Find Full Text PDFPeerJ
December 2024
Faculty of Ecology and Environment, Baotou Teacher's College, Baotou, China.
Improper storage of post-harvest fruits leads to significant losses, especially due to microbial-induced decay. Understanding the naturally occurring microbial communities on fruit surfaces and their functions is the first step in the development of new strategies for controlling post-harvest fruit decay. These new strategies could generate significant economic value by improving fruit preservation and extending the shelf-life of fruit.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
Division of Biotechnology, Jeonbuk National University, Iksan, Jeonbuk, South Korea.
We report here the complete genome sequence of sp. strain OS1-2, a bacterium isolated from apple orchard soil and possessing a complete set of denitrification functional genes in its genome. The isolate was observed to perform denitrification under aerobic and anaerobic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!