A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Atlanto-axial facet displacement during rotational high-velocity low-amplitude thrust: An in vitro 3D kinematic analysis. | LitMetric

Atlanto-axial facet displacement during rotational high-velocity low-amplitude thrust: An in vitro 3D kinematic analysis.

Man Ther

Vrije Universiteit Brussel, Belgium, Department of Experimental Anatomy, Laarbeeklaan 103, B-1090 Bruxelles, Belgium. Electronic address:

Published: December 2015

Background: Very little is known about the kinematics of the upper cervical spine in particular during Manual Therapy techniques. In fact no data about displacement of the atlanto-axial joint during High-Velocity Low-Amplitude (HVLA) thrust are available. Knowing the precise kinematics of these vertebrae might allow a better comprehension of such important technique and possible vital structures involvement.

Methods: A Zebris CMS20 ultrasound-based motion tracking system was adopted. Twenty fresh human cervical specimens were used in this study. Facet joint displacements of C1 relative to C2 were analysed during three consecutive HVLA thrusts into rotation. Displacement during the thrust and the maximum displacement reached with the manoeuvre were analysed.

Results: Descriptive statistics showed a mean Norm displacement during the thrust of 0.5 mm (SD ± 0.5). The maximum displacement, representing the overall facet movement from neutral to end-range position, indicated a Norm value of 6.0 mm (SD ± 3.4). Heterogeneous displacement directions were found during the thrust. Intra and inter-rater reliability reached an insufficient reproducibility level. Considering the amount of displacement induced, no statistical significant differences between the registrations were shown.

Conclusion: Displacement during the execution of HVLA thrust is unintentional, unpredictable and not reproducible. On the other hand and in accordance with other studies, the displacement induced with the present technique seems not to be able to endanger vital structure on the Spinal Cord and the Vertebral Artery. This study also adds to a better comprehension of the kinematic of the atlanto-axial segment during the performance of HVLA manipulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.math.2015.03.006DOI Listing

Publication Analysis

Top Keywords

displacement
10
high-velocity low-amplitude
8
hvla thrust
8
better comprehension
8
displacement thrust
8
thrust maximum
8
maximum displacement
8
displacement induced
8
thrust
6
atlanto-axial facet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!