A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mapping between 6 Multiattribute Utility Instruments. | LitMetric

Mapping between 6 Multiattribute Utility Instruments.

Med Decis Making

Centre for Health Economics, Monash University, Clayton, Australia (MAK, AI, JR)

Published: February 2016

Background: Cost-utility analyses commonly employ a multiattribute utility (MAU) instrument to estimate the health state utilities, which are needed to calculate quality-adjusted life years. Different MAU instruments predict significantly different utilities, which makes comparison of results from different evaluation studies problematical.

Aim: This article presents mapping functions ("crosswalks") from 6 MAU instruments (EQ-5D-5L, SF-6D, Health Utilities Index 3 [HUI 3], 15D, Quality of Well-Being [QWB], and Assessment of Quality of Life 8D [AQoL-8D]) to each of the other 5 instruments in the study: a total of 30 mapping functions.

Methods: Data were obtained from a multi-instrument comparison survey of the public and patients in 7 disease areas conducted in 6 countries (Australia, Canada, Germany, Norway, United Kingdom, and United States). The 8022 respondents were administered each of the 6 study instruments. Mapping equations between each instrument pair were estimated using 4 econometric techniques: ordinary least squares, generalized linear model, censored least absolute deviations, and, for the first time, a robust MM-estimator.

Results: Goodness-of-fit indicators for each of the results are within the range of published studies. Transformations reduced discrepancies between predicted utilities. Incremental utilities, which determine the value of quality-related health benefits, are almost perfectly aligned at the sample means.

Conclusion: Transformations presented here align the measurement scales of MAU instruments. Their use will increase confidence in the comparability of evaluation studies, which have employed different MAU instruments.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0272989X15578127DOI Listing

Publication Analysis

Top Keywords

mau instruments
16
multiattribute utility
8
evaluation studies
8
instruments
7
mau
5
utilities
5
mapping
4
mapping multiattribute
4
utility instruments
4
instruments background
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!