Protein-protein interactions are among the keys to organizing cellular processes in space and time. One of the only direct ways to identify such interactions in their cellular environment is to covalently bond the interacting partners to fix the interaction. Photocross-linking in living cells is thus a very promising technique. The feasibility of in cellulo photocross-linking reactions has been shown and mass spectrometry is a tool of choice to analyze photocross-linked proteins. However, the interpretation of the MS and MS/MS spectra of photocross-linked peptides remains one of the most important bottlenecks of the method and still limits its potential for large-scale applications (interactomics). Fundamental studies are still necessary to understand and characterize the fragmentation behavior of photocross-linked peptides. Here, we report the successful identification of the interaction sites in a well-characterized model of in vitro interaction between a protein and a peptide. We describe in detail the fragmentation pattern of these photocross-linked species in order to identify trends that could be generalized. In particular, we compare CID and ETD fragmentation modes (and HCD in a lesser extent), demonstrating the complementarity of both methods and the advantage of ETD for the analysis of photocross-linked species. The information should help further development of dedicated software to properly score MS/MS spectra of photocross-linked species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13361-015-1095-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!