Background: Intraductal papillary mucinous neoplasms (IPMN) are being increasingly recognized as important precursors to pancreatic adenocarcinoma. Elucidation of the genetic changes underlying IPMN carcinogenesis may improve the diagnosis and management of IPMN. We sought to determine whether different histologic subtypes of IPMN would exhibit different frequencies of specific genetic mutations.

Study Design: Patients with resected IPMN-associated invasive carcinoma (IPMN-INV) between 1997 and 2012 were reviewed. Areas of carcinoma, high-grade dysplasia, and low-grade dysplasia were micro-dissected from each pathologic specimen. Targeted, massively parallel sequencing was then performed on a panel of 275 genes (including KRAS, GNAS, and RNF43).

Results: Thirty-eight patients with resected IPMN-INV and sufficient tissue for micro-dissection were identified. Median follow-up was 2.6 years. Mutations in GNAS were more prevalent in colloid-type IPMN-INV than tubular-type IPMN-INV (89% vs 32% respectively; p = 0.0003). Conversely, KRAS mutations were more prevalent in tubular-type than colloid-type IPMN-INV (89% vs 52%, respectively; p = 0.01). For noninvasive IPMN subtypes, GNAS mutations were more prevalent in intestinal (74%) compared with pancreatobiliary (31%) and gastric (50%) subtypes (p = 0.02). The presence of these mutations did not vary according to the degree of dysplasia (GNAS: invasive 61%, high-grade 59%, low-grade 53%; KRAS: invasive 71%, high-grade 62%, low-grade 74%), suggesting that mutations in these genes occur early in IPMN carcinogenesis.

Conclusions: Colloid carcinoma associated with IPMN and its intestinal-type preinvasive precursor are associated with high frequencies of GNAS mutations. The mutation profile of tubular carcinoma resembles that of conventional pancreatic adenocarcinoma. Preoperative determination of mutational status may assist with clinical treatment decisions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409519PMC
http://dx.doi.org/10.1016/j.jamcollsurg.2014.11.029DOI Listing

Publication Analysis

Top Keywords

kras mutations
8
intraductal papillary
8
papillary mucinous
8
pancreatic adenocarcinoma
8
patients resected
8
colloid-type ipmn-inv
8
ipmn-inv 89%
8
mutations prevalent
8
gnas mutations
8
mutations
7

Similar Publications

Establishment and characterization of a new mouse gastric carcinoma cell line, MCC.

Cancer Cell Int

January 2025

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, People's Republic of China.

Background: The aim of this study was to establish a primary mouse gastric carcinoma cell line.

Methods: Gastric adenocarcinoma in the body region was induced in immunocompetent BALB/c mice using N-Methyl-N-nitrosourea and a 2% NaCl solution. Fresh gastric cancer tissue samples were cultured in 1640 medium supplemented with 10% fetal bovine serum for primary culture and subculture.

View Article and Find Full Text PDF

Enhanced detection of actionable mutations in NSCLC through pleural effusion cell-free DNA sequencing: A prospective study.

Eur J Cancer

January 2025

Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Zhongzheng Dist., Taipei City 100, Taiwan. Electronic address:

Background: Inadequate tumour samples often hinder molecular testing in non-small cell lung cancer (NSCLC). Plasma-based cell-free DNA (cfDNA) sequencing has shown promise in bypassing these tissue limitations. Nevertheless, pleural effusion (PE) samples may offer a richer cfDNA source for mutation detection in patients with malignant PE.

View Article and Find Full Text PDF

KRAS is a proto-oncogene that is found to be mutated in 15% of all metastatic cancers with high prevalence in pancreatic, lung, and colorectal cancers. Additionally, patients harboring KRAS mutations respond poorly to standard cancer therapy. As a result, KRAS is seen as an attractive target for targeted anticancer therapy.

View Article and Find Full Text PDF

Targeting KRAS: from metabolic regulation to cancer treatment.

Mol Cancer

January 2025

Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China.

The Kirsten rat sarcoma viral oncogene homolog (KRAS) protein plays a key pathogenic role in oncogenesis, cancer progression, and metastasis. Numerous studies have explored the role of metabolic alterations in KRAS-driven cancers, providing a scientific rationale for targeting metabolism in cancer treatment. The development of KRAS-specific inhibitors has also garnered considerable attention, partly due to the challenge of acquired treatment resistance.

View Article and Find Full Text PDF

Urachal cancer, a rare malignancy, generally presents in the clinical setting with advanced stages of disease. Systemic treatment with chemotherapy is generally utilized in this setting. However, there remains a paucity of data on the effectiveness of immune checkpoint inhibitors or targeted therapies for urachal cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!