Nitric oxide (NO) is an important signal molecule released by most cancer cells under drug stimulation or/and disease development but it is extremely challenging to in situ while real-time sensitively detect NO due to its large diffusivity, low concentration and fast decay. Herein, shape-controlled reduced graphene oxide nanocomposing with ceria (rGO-CeO2) was synthesized via hydrothermal reaction to construct a highly sensitive real-time sensing platform for NO detection. The crystal shape of CeO2 nanoparticles in rGO-CeO2 composites significantly affects the sensing performance of rGO-CeO2, of which the regular hexagonal nanocrystal CeO2 achieves the highest sensitivity (1676.06 mA cm(-2) M(-1)), a wide dynamic range (18.0 nM to 5.6 µM) and a low detection limit (9.6 nM). This attributes to a synergical effect from high catalytic activity of the specifically shaped CeO2 nanocrystal and good conductivity/high surface area of rGO. This work demonstrates a way by rationally compose individual merit components while well control the nanostructure for a superior synergistic effect to build a smart sensing platform, while offering a great application potential to sensitively real-time detect NO released from living cells for diagnosis or/and studies of complicated biological processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2015.03.056 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!