Humanized mice dually challenged with R5 and X4 HIV-1 show preferential R5 viremia and restricted X4 infection of CCR5(+)CD4(+) T cells.

Microbes Infect

Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, 5-23-22 Nishikamata, Ota-ku, Tokyo 144-8535, Japan. Electronic address:

Published: May 2015

CCR5-tropic (R5) immunodeficiency virus type 1 (HIV-1) strains are highly transmissible during the early stage of infection in humans, whereas CXCR4-tropic (X4) strains are less transmissible. This study aimed to explore the basis for early phase R5 and X4 HIV-1 infection in vivo by using humanized mice dually challenged with R5 HIV-1NLAD8-D harboring DsRed and X4 HIV-1(NL-E) harboring EGFP. Whereas R5 HIV-1 replicated well, X4 HIV-1 caused only transient viremia with variable kinetics; however, this was distinct from the low level but persistent viremia observed in mice challenged with X4 HIV-1 alone. Flow cytometric analysis of HIV-1-infected cells revealed that X4 HIV-1 infection of CCR5(+)CD4(+) T cells was significantly suppressed in the presence of R5 HIV-1. X4 HIV-1 was more cytopathic than R5 HIV-1; however, this was not the cause of restricted X4 HIV-1 infection because there were no significant differences in the mortality rates of CCR5(+) and CCR5(-) cells within the X4 HIV-1-infected cell populations. Taken together, these results suggest that restricted infection of CCR5(+)CD4(+) T cells by X4 HIV-1 (occurring via a still-to-be-identified mechanism) might contribute to the preferential transmission of R5 HIV-1 during the early phase of infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micinf.2015.02.002DOI Listing

Publication Analysis

Top Keywords

hiv-1
13
infection ccr5+cd4+
12
ccr5+cd4+ cells
12
hiv-1 infection
12
humanized mice
8
mice dually
8
dually challenged
8
challenged hiv-1
8
restricted infection
8
early phase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!