Probing the Interfacial Interaction in Layered-Carbon-Stabilized Iron Oxide Nanostructures: A Soft X-ray Spectroscopic Study.

ACS Appl Mater Interfaces

§Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Published: April 2015

We have stabilized the iron oxide nanoparticles (NPs) of various sizes on layered carbon materials (Fe-oxide/C) that show excellent catalytic performance. From the characterization of X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES), scanning transmission X-ray microscopy (STXM) and X-ray magnetic circular dichroism spectroscopy (XMCD), a strong interfacial interaction in the Fe-oxide/C hybrids has been observed between the small iron oxide NPs and layered carbon in contrast to the weak interaction in the large iron oxide NPs. The interfacial interaction between the NPs and layered carbon is found to link with the improved catalytic performance. In addition, the Fe L-edge XMCD spectra show that the large iron oxide NPs are mainly γ-Fe2O3 with a strong ferromagnetic property, whereas the small iron oxide NPs with strong interfacial interaction are mainly α-Fe2O3 or amorphous Fe2O3 with a nonmagnetic property. The results strongly suggest that the interfacial interaction plays a key role for the catalytic performance, and the experimental findings may provide guidance toward rational design of high-performance catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am5073996DOI Listing

Publication Analysis

Top Keywords

iron oxide
24
interfacial interaction
20
oxide nps
16
layered carbon
12
catalytic performance
12
strong interfacial
8
small iron
8
nps layered
8
large iron
8
interaction
6

Similar Publications

Wastewater is commonly contaminated with many pharmaceutical pollutants, so an efficient purification method is required for their removal from wastewater. In this regard, an innovative tertiary Se/SnO@CMC/Fe-GA nanocomposite was synthesized through encapsulation of metal organic frameworks (Fe-glutaric acid) onto Se/SnO-embedded-sodium carboxy methyl cellulose matrix to thoroughly evaluate its effectiveness for adsorption of levofloxacin drug from wastewater. The prepared Se/SnO@CMC/Fe-GA nanocomposite was analyzed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to valuate optical property, size, morphology, thermal stability, and chemical composition.

View Article and Find Full Text PDF

Loading monocytes with magnetic nanoparticles enables their magnetic control without toxicity.

Front Bioeng Biotechnol

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.

Background: With the help of superparamagnetic iron oxide nanoparticles (SPIONs), cells can be magnetically directed so that they can be accumulated at target sites. This principle can be used to make monocytes magnetically steerable in order to improve tumor accumulation, e.g.

View Article and Find Full Text PDF

Magnetoliposomes containing magnetite, soy lecithin, stigmasterol, and beta-sitosterol of the mean size minor than 160 nm were obtained by a scalable and green process using autoclave and sonication without organic solvents. The formation, size of the liposome, linkage, and encapsulation of the magnetite were evaluated by Cryo-TEM. The stability of magnetoliposomes after storage for 6 months at 4 °C was improved by liposome size, the ability of soy lecithin to preserve the magnetite phase against oxidation, pH, polydispersity index, and zeta potential.

View Article and Find Full Text PDF

Waste-to-Energy (WtE) generates circa 1 Mt/y of Mineral fraction of Incineration Bottom Ash (MIBA) in Sweden, often used as construction material for landfills. Upcoming European Commission directives will limit landfilling and the demand for MIBA for landfill construction is predicted to decrease. Therefore, alternative utilisations of MIBA are required.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!