The gastrointestinal mucosa has proven to be an interesting tissue for which to investigate disease-related metabolism. In this review, we outline some evidence that implicates metabolic signaling as important features of barrier in the healthy and disease. Studies from cultured cell systems, animal models and human patients have revealed that metabolites generated within the inflammatory microenvironment are central to barrier regulation. These studies have revealed a prominent role for hypoxia and hypoxia-inducible factor (HIF) at key steps in adenine nucleotide metabolism and within the creatine kinase pathway. Results from animal models of intestinal inflammation have demonstrated an almost uniformly beneficial influence of HIF stabilization on disease outcomes and barrier function. Studies underway to elucidate the contribution of immune responses will provide additional insight into how metabolic changes contribute to the complexity of the gastrointestinal tract and how such information might be harnessed for therapeutic benefit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372015PMC
http://dx.doi.org/10.4161/21688362.2014.970936DOI Listing

Publication Analysis

Top Keywords

animal models
8
metabolic regulation
4
regulation intestinal
4
intestinal epithelial
4
barrier
4
epithelial barrier
4
barrier inflammation
4
inflammation gastrointestinal
4
gastrointestinal mucosa
4
mucosa proven
4

Similar Publications

JBJS convened a symposium to discuss the reporting of sex and gender in research studies as an imperative to improve research methods and results to benefit all patients. Barriers to improved reporting include a lack of societal and cultural acceptance of its need; a lack of education regarding appropriate terminology and appropriate statistical methods and efficient study designs; a need for increased research funding to support larger group sizes; unknown concordance of cell and animal models with humans to reflect biologic variables such as sex; and a lack of understanding of key considerations of gender, race, and other social determinants of health and how these factors intersect. Attention to developing and disseminating best-practice statistical methods and to educating investigators (at all career levels), reviewers, funders, editors, and staff in their proper implementation will aid reporting.

View Article and Find Full Text PDF

The prevalence of breast cancer (BRCA) is notable in the female population, being a commonly diagnosed malignancy, where the management of copper levels is crucial for treatment success. This research aims to explore the influence of copper homeostasis on BRCA therapy, with a specific focus on the role of Cyclin-Dependent Kinase 1 (CDK1) and its relationship to copper regulation. A novel thermosensitive hydrogel incorporating nanoparticles (NPs) was engineered to synergize with the chemotherapy drug vincristine (VCR) in inhibiting tumor growth and metastasis.

View Article and Find Full Text PDF

The development of genome technology has opened new possibilities for comparative primate genomics. Non-human primates share approximately 98% genome similarity and provides vital information into the genetic similarities and variances among species utilized as disease models. DNA study links unique genetic variations to common facial attributes such as nose and eyes.

View Article and Find Full Text PDF

Background: Premature ovarian insufficiency (POI) is a refractory disease that severely affects female fertility. The PERK/eIF-2α/ATF4/CHOP pathway is one of the classical pathways involved in the unfolded protein response to endoplasmic reticulum stress by regulating protein synthesis and promoting apoptosis. This study aimed to investigate the functional role and mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in the POI animal model through the PERK/eIF-2α/ATF4/CHOP pathway.

View Article and Find Full Text PDF

Topological functional network analysis of cortical blood flow in hyperacute ischemic rats.

Brain Struct Funct

December 2024

The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.

Acute cerebral ischemia alters brain network connectivity, leading to notable increases in both anatomical and functional connectivity while observing a reduction in metabolic connectivity. However, alterations of the cerebral blood flow (CBF) based functional connectivity remain unclear. We collected continuous CBF images using laser speckle contrast imaging (LSCI) technology to monitor ischemic occlusion-reperfusion progression through occlusion of the left carotid artery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!