A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Experimental Path Loss Models for In-Body Communications Within 2.36-2.5 GHz. | LitMetric

Biomedical implantable sensors transmitting a variety of physiological signals have been proven very useful in the management of chronic diseases. Currently, the vast majority of these in-body wireless sensors communicate in frequencies below 1 GHz. Although the radio propagation losses through biological tissues may be lower in such frequencies, e.g., the medical implant communication services band of 402 to 405 MHz, the maximal channel bandwidths allowed therein constrain the implantable devices to low data rate transmissions. Novel and more sophisticated wireless in-body sensors and actuators may require higher data rate communication interfaces. Therefore, the radio spectrum above 1 GHz for the use of wearable medical sensing applications should be considered for in-body applications too. Wider channel bandwidths and smaller antenna sizes may be obtained in frequency bands above 1 GHz at the expense of larger propagation losses. Therefore, in this paper, we present a phantom-based radio propagation study for the frequency bands of 2360 to 2400 MHz, which has been set aside for wearable body area network nodes, and the industrial, scientific, medical band of 2400 to 2483.5 MHz. Three different channel scenarios were considered for the propagation measurements: in-body to in-body, in-body to on-body, and in-body to off-body. We provide for the first time path loss formulas for all these cases.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2015.2418757DOI Listing

Publication Analysis

Top Keywords

path loss
8
in-body
8
radio propagation
8
propagation losses
8
channel bandwidths
8
data rate
8
frequency bands
8
in-body in-body
8
experimental path
4
loss models
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!