In this paper, we present and investigate an approach to fast multilabel color image segmentation using convex optimization techniques. The presented model is in some ways related to the well-known Mumford-Shah model, but deviates in certain important aspects. The optimization problem has been designed with two goals in mind. The objective function should represent fundamental concepts of image segmentation, such as incorporation of weighted curve length and variation of intensity in the segmented regions, while allowing transformation into a convex concave saddle point problem that is computationally inexpensive to solve. This paper introduces such a model, the nontrivial transformation of this model into a convex-concave saddle point problem, and the numerical treatment of the problem. We evaluate our approach by applying our algorithm to various images and show that our results are competitive in terms of quality at unprecedentedly low computation times. Our algorithm allows high-quality segmentation of megapixel images in a few seconds and achieves interactive performance for low resolution images.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2015.2419078DOI Listing

Publication Analysis

Top Keywords

image segmentation
12
approach fast
8
saddle point
8
point problem
8
fast gradient-based
4
gradient-based image
4
segmentation
4
segmentation paper
4
paper investigate
4
investigate approach
4

Similar Publications

Transformers for Neuroimage Segmentation: Scoping Review.

J Med Internet Res

January 2025

Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates.

Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a promising deep learning approach for automated medical image segmentation.

View Article and Find Full Text PDF

Spherical harmonics texture extraction for versatile analysis of biological objects.

PLoS Comput Biol

January 2025

European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany.

The characterization of phenotypes in cells or organisms from microscopy data largely depends on differences in the spatial distribution of image intensity. Multiple methods exist for quantifying the intensity distribution - or image texture - across objects in natural images. However, many of these texture extraction methods do not directly adapt to 3D microscopy data.

View Article and Find Full Text PDF

Heart development involves the complex structural remodelling of a linear heart tube into an asymmetrically looped and ballooned organ. Previous studies have associated regional expansion of extracellular matrix (ECM) space with tissue morphogenesis during development. We have developed morphoHeart, a 3D tissue segmentation and morphometry software with a user-friendly graphical interface (GUI) that delivers the first integrated 3D visualisation and multiparametric analysis of both heart and ECM morphology in live embryos.

View Article and Find Full Text PDF

Chronic wounds, due to their high prevalence, are a serious global health concern. Effective therapeutic strategies can significantly accelerate healing, thereby reducing the risk of complications and alleviating the economic burden on healthcare systems. Although numerous experimental studies have investigated wound healing, most rely on qualitative observations or quantitative direct measurements.

View Article and Find Full Text PDF

The maintenance of an appropriate ratio of body fat to muscle mass is essential for the preservation of health and performance, as excessive body fat is associated with an increased risk of various diseases. Accurate body composition assessment requires precise segmentation of structures. In this study we developed a novel automatic machine learning approach for volumetric segmentation and quantitative assessment of MRI volumes and investigated the efficacy of using a machine learning algorithm to assess muscle, subcutaneous adipose tissue (SAT), and bone volume of the thigh before and after a strength training.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!