A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: Network is unreachable

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vivo delivery of functional Flightless I siRNA using layer-by-layer polymer surface modification. | LitMetric

Gene silencing using small interfering RNA has been proposed as a therapy for cancer, viral infections and other diseases. This study aimed to investigate whether layer-by-layer polymer surface modification could deliver small interfering RNA to decrease fibrotic processes associated with medical device implantation. Anti-green fluorescent protein labelled small interfering RNA was applied to tissue culture plates and polyurethane using a layer-by-layer technique with small interfering RNA and poly-L-lysine. In vitro studies showed that the level of down-regulation of green fluorescent protein was directly related to the number of coatings applied. This layer-by-layer coating technique was then used to generate Rhodamine-Flii small interfering RNA-coated implants for in vivo studies of small interfering RNA delivery via subcutaneous implantation in mice. After two days, Rh-positive cells were observed on the implants' surface indicating cellular uptake of the Rhodamine-Flii small interfering RNA. Decreased Flii gene expression was observed in tissue surrounding the Rhodamine-Flii small interfering RNA coated implants for up to seven days post implantation, returning to baseline by day 21. Genes downstream from Flii, including TGF-β1 and TGF-β3, showed significantly altered expression confirming a functional effect of the Rhodamine-Flii small interfering RNA on gene expression. This research demonstrates proof-of-principle that small interfering RNA can be delivered via layer-by-layer coatings on biomaterials and thereby can alter the fibrotic process.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0885328215579422DOI Listing

Publication Analysis

Top Keywords

small interfering
40
interfering rna
36
rhodamine-flii small
16
small
10
interfering
10
rna
9
layer-by-layer polymer
8
polymer surface
8
surface modification
8
fluorescent protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!