Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: Controllable P(3HB-co-4HB) biosynthesis.

Metab Eng

MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Center for Nano and Micro-Mechanics, Tsinghua University, Beijing 100084, China. Electronic address:

Published: May 2015

Clustered regularly interspaced short palindromic repeats interference (CRISPRi) is used to edit eukaryotic genomes. Here, we show that CRISPRi can also be used for fine-tuning prokaryotic gene expression while simultaneously regulating multiple essential gene expression with less labor and time consumption. As a case study, CRISPRi was used to control polyhydroxyalkanoate (PHA) biosynthesis pathway flux and to adjust PHA composition. A pathway was constructed in Escherichia coli for the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from glucose. The native gene sad encoding E. coli succinate semi-aldehyde dehydrogenase was expressed under the control of CRISPRi using five specially designed single guide RNAs (sgRNAs) for regulating carbon flux to 4-hydroxybutyrate (4HB) biosynthesis. The system allowed formation of P(3HB-co-4HB) consisting of 1-9mol% 4HB. Additionally, succinate, generated by succinyl-coA synthetase and succinate dehydrogenase (respectively encoded by genes sucC, sucD and sdhA, sdhB) was channeled preferentially to the 4HB precursor by using selected sgRNAs such as sucC2, sucD2, sdhB2 and sdhA1 via CRISPRi. The resulting 4HB content in P(3HB-co-4HB) was found to range from 1.4 to 18.4mol% depending on the expression levels of down-regulated genes. The results show that CRISPRi is a feasible method to simultaneously manipulate multiple genes in E. coli.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2015.03.013DOI Listing

Publication Analysis

Top Keywords

multiple genes
8
case study
8
gene expression
8
crispri
6
application crispri
4
crispri prokaryotic
4
prokaryotic metabolic
4
metabolic engineering
4
engineering involving
4
involving multiple
4

Similar Publications

Knockout of a testis-specific gene cluster impairs male fertility in the fall armyworm, Spodoptera frugiperda.

Pest Manag Sci

January 2025

Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China.

Background: The function of some testis-specific genes (TSGs) in model insects have been studied, but their function in non-model insects remains largely unexplored. In the present study, we identified several TSGs in the fall armyworm (FAW), a significant agricultural pest, through comparative transcriptomic analysis. A testis-specific gene cluster (TSGC) comprising multiple functional genes and long non-coding RNAs was found.

View Article and Find Full Text PDF

Hibernation, an adaptive mechanism to extreme environmental conditions, is prevalent among mammals. Its main characteristics include reduced body temperature and metabolic rate. However, the mechanisms by which hibernating animals re-enter deep sleep during the euthermic phase to sustain hibernation remain poorly understood.

View Article and Find Full Text PDF

The global outbreak of COVID-19, caused by the SARS-CoV-2 virus, has been linked to long-term neurological complications, including an increased risk of Alzheimer's disease (AD) among older adults. However, the precise genetic impact of COVID-19 on long-term AD development remains unclear. This study leveraged genome-wide association study (GWAS) data and genotype data to explore the genetic association between AD and various COVID-19 phenotypes across European ancestry (EA) and African ancestry (AA) cohorts, and the possibility of a causal effect of COVID-19 on AD.

View Article and Find Full Text PDF

Oligodendroglial lineage cells (OLCs) are critical for neuronal support functions, including myelination and remyelination. Emerging evidence reveals their active roles in neuroinflammation, particularly in conditions like Multiple Sclerosis (MS). This study explores the inflammatory translatome of OLCs during the early onset of experimental autoimmune encephalomyelitis (EAE), an established MS model.

View Article and Find Full Text PDF

Unlabelled: Strain-level variation among host-associated bacteria often determines host range and the extent to which colonization is beneficial, benign, or pathogenic. is a beneficial symbiont of the light organs of fish and squid with known strain-specific differences that impact host specificity, colonization efficiency, and interbacterial competition. Here, we describe how the conserved global regulator, H-NS, has a strain-specific impact on a critical colonization behavior: biofilm formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!