A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis and structure-activity relationship studies of novel [6,6,5] tricyclic oxazolidinone derivatives as potential antibacterial agents. | LitMetric

Synthesis and structure-activity relationship studies of novel [6,6,5] tricyclic oxazolidinone derivatives as potential antibacterial agents.

Bioorg Med Chem Lett

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. Electronic address:

Published: February 2016

In our previous Letter, we reported the discovery of a novel benzoxazinyl-oxazolidinone antibacterial candidate 2. In order to identify a potential backup compound, extensive modifications on the B/C ring and C3 side chain were undertaken. A series of novel [6,6,5] tricyclic analogues were synthesized and their in vitro antibacterial activities were tested against a panel of susceptible and resistant Gram-positive pathogens. Among of them, benzothiazinyl-oxazolidinones with acetamide or thioamide as C3 side chains exhibited moderate to good antibacterial activity, such as compounds 54, 58, 59 and 63. In vitro liver microsomal stability was further evaluated and the results manifested that compounds 54 and 58 were both metabolically stable in rat and human liver microsomes. Additionally, insights gained from this investigation should provide directions for the further research of new oxazolidinone antibiotics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2015.03.053DOI Listing

Publication Analysis

Top Keywords

novel [665]
8
[665] tricyclic
8
synthesis structure-activity
4
structure-activity relationship
4
relationship studies
4
studies novel
4
tricyclic oxazolidinone
4
oxazolidinone derivatives
4
derivatives potential
4
antibacterial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!