Arsenic is a heavy metal found in contaminated gold mining areas and which can affect plant and animal species. This study aims to determine the concentration of As in the aquatic plant Colocasia esculenta as well as this plant's genetic variability. Sediment and C. esculenta samples were collected from three studied sites at the edge of a stream around a gold mine. The arsenic concentrations in sediment and C. esculenta samples were analyzed using induction coupled plasma-mass spectrometry (ICP-MS). Genetic differentiations were studied by random amplified polymorphic DNA (RAPD) with dendrogram construction and analysis of genetic similarity (S). The results showed that the arsenic concentrations in sediment and C. esculenta samples ranged from 4.547 ± 0.318 to 229.964 ± 0.978 and 0.108 ± 0.046 to 0.406 ± 0.174 mg kg(-1), respectively. To compare the samples studied to the reference site, RAPD fingerprints from 26 primers successfully produced 2301 total bands used for dendrogram construction and S value analysis. The dendrogram construction separates C. esculenta into four clusters corresponding to their sampling sites. The S values of the studied sample sites compared to the reference site are 0.676-0.779, 0.739-0.791, and 0.743-0.783 for sites 1, 2, and 3, respectively, whereas the values of the individuals within each site are as high as 0.980. These results suggest that As accumulation in aquatic plant species should be of concern because of the potential effects of As on aquatic plants as well as humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-015-4462-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!