The mechanism of ageing: primary role of transposable elements in genome disintegration.

Cell Mol Life Sci

Department of Genetics, Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, Hungary.

Published: May 2015

Understanding the molecular basis of ageing remains a fundamental problem in biology. In multicellular organisms, while the soma undergoes a progressive deterioration over the lifespan, the germ line is essentially immortal as it interconnects the subsequent generations. Genomic instability in somatic cells increases with age, and accumulating evidence indicates that the disintegration of somatic genomes is accompanied by the mobilisation of transposable elements (TEs) that, when mobilised, can be mutagenic by disrupting coding or regulatory sequences. In contrast, TEs are effectively silenced in the germ line by the Piwi-piRNA system. Here, we propose that TE repression transmits the persistent proliferation capacity and the non-ageing phenotype (e.g., preservation of genomic integrity) of the germ line. The Piwi-piRNA pathway also operates in tumorous cells and in somatic cells of certain organisms, including hydras, which likewise exhibit immortality. However, in somatic cells lacking the Piwi-piRNA pathway, gradual chromatin decondensation increasingly allows the mobilisation of TEs as the organism ages. This can explain why the mortality rate rises exponentially throughout the adult life in most animal species, including humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11113528PMC
http://dx.doi.org/10.1007/s00018-015-1896-0DOI Listing

Publication Analysis

Top Keywords

somatic cells
12
transposable elements
8
germ piwi-pirna
8
piwi-pirna pathway
8
mechanism ageing
4
ageing primary
4
primary role
4
role transposable
4
elements genome
4
genome disintegration
4

Similar Publications

The unexplained association between infection and autoimmune disease is strongest for hepatitis C virus-induced cryoglobulinemic vasculitis (HCV-cryovas). To analyze its origins, we traced the evolution of pathogenic rheumatoid factor (RF) autoantibodies in four HCV-cryovas patients by deep single-cell multi-omic analysis, revealing three sources of B cell somatic mutation converged to drive the accumulation of a large disease-causing clone. A method for quantifying low-affinity binding revealed recurring antibody variable domain combinations created by V(D)J recombination that bound self-immunoglobulin G (IgG) but not viral E2 antigen.

View Article and Find Full Text PDF

Antigen affinity and site of immunization dictate B cell recall responses.

Cell Rep

January 2025

Department of Microbiology, Tumor and Cell Biology, Division of Virology and Immunology, Karolinska Institutet, 171 65 Solna, Sweden. Electronic address:

Protective antibodies against HIV-1 require unusually high levels of somatic mutations introduced in germinal centers (GCs). To achieve this, a sequential vaccination approach was proposed. Using HIV-1 antibody knockin mice with fate-mapping genes, we examined if antigen affinity affects the outcome of B cell recall responses.

View Article and Find Full Text PDF

The adult mammalian testis is filled with seminiferous tubules, which contain somatic Sertoli cells along with germ cells undergoing all phases of spermatogenesis. During spermatogenesis in postnatal mice, male germ cells undergo at least 17 different nomenclature changes as they proceed through mitosis as spermatogonia (=8), meiosis as spermatocytes (=6), and spermiogenesis as spermatids (=3) [1-6]. Adding to this complexity, combinations of germ cells at each of these stages of development are clumped together along the length of the seminiferous tubules.

View Article and Find Full Text PDF

Background: The persistently high mortality and morbidity rates of hepatocellular carcinoma (HCC) remain a global concern. Notably, the disruptions in mitochondrial cholesterol metabolism (MCM) play a pivotal role in the progression and development of HCC, underscoring the significance of this metabolic pathway in the disease's etiology. The purpose of this research was to investigate genes associated with MCM and develop a model for predicting the prognostic features of patients with HCC.

View Article and Find Full Text PDF

Histone mutations (H3 K27M, H3 G34R/V) are molecular features defining subtypes of paediatric-type diffuse high-grade gliomas (HGG) (diffuse midline glioma (DMG), H3 K27-altered, diffuse hemispheric glioma (DHG), H3 G34-mutant). The WHO classification recognises in exceptional cases, these mutations co-occur. We report one such case of a 2-year-old female presenting with neurological symptoms; MRI imaging identified a brainstem lesion which was biopsied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!